NeurIPS 2025 Spotlight | GeoSVR:稀疏体素的新潜力——超越3DGS系列的高精度三维表面重建
NeurIPS 2025 Spotlight | GeoSVR:稀疏体素的新潜力——超越3DGS系列的高精度三维表面重建近年来,NeRF、SDF 与 3D Gaussian Splatting 等方法大放异彩,让 AI 能从图像中恢复出三维世界。但随着相关技术路线的发展与完善,瓶颈问题也随之浮现:
近年来,NeRF、SDF 与 3D Gaussian Splatting 等方法大放异彩,让 AI 能从图像中恢复出三维世界。但随着相关技术路线的发展与完善,瓶颈问题也随之浮现:
3D 生成正从纯虚拟走向物理真实,现有的 3D 生成方法主要侧重于几何结构与纹理信息,而忽略了基于物理属性的建模。
本周,我们邀请 3D 大模型公司 VAST 的创始人和 CEO 宋亚宸(Simon),和我们聊聊 VAST 最新 3D 生成大模型 Tripo 3.0 背后的故事。这位 97 年的创业者短期内连续融资三轮、每轮数千万美金,积攒了足够的子弹,在闷头苦干一年后,Simon 今年首次上播客,和我们探讨了几个关键的战略问题:
VLA模型通常建立在预训练视觉语言模型(VLM)之上,仅基于2D图像-文本数据训练,缺乏真实世界操作所需的3D空间理解能力。
在三维重建不断走向工程化的今天,前馈式3D Gaussian Splatting(Feed-Forward 3DGS)正火速走向产业化。 然而,现有的前馈3DGS方法主要采用“像素对齐”(pixel-aligned)策略——即将每个2D像素单独映射到一个或多个3D高斯上。
由华中科技大学与小米汽车提出了业内首个无需 OCC 引导的多模态的图像 - 点云联合生成框架 Genesis。该算法只需基于场景描述和布局(包括车道线和 3D 框),就可以生成逼真的图像和点云视频。
业界首个高质量原生3D组件生成模型来了!来自腾讯混元3D团队。现有的3D生成算法通常会生成一体化的3D模型,而下游应用通常需要语义可分解的3D形状,即3D物体的每一个组件需要单独地生成出来。
在 AI 技术浪潮狂飙的 2025 年,市场的聚光灯无疑主要打在了 AI Agent 这位年度主角身上,它所预示的自动化与智能交互的未来,吸引了绝大部分的目光与资本。
行业首个具备“高刷”视频理解能力的多模态模型MiniCPM-V 4.5的技术报告正式发布!报告提出统一的3D-Resampler架构实现高密度视频压缩、面向文档的统一OCR和知识学习范式、可控混合快速/深度思考的多模态强化学习三大技术。
自 Sora 亮相以来,AI 视频的真实感突飞猛进,但可控性仍是瓶颈:模型像才华横溢却随性的摄影师,难以精准执行 “导演指令”。我们能否让 AI 做到: 仅凭一张静态照片,就能 “脑补” 出整个 3D