
DiT架构大一统:一个框架集成图像、视频、音频和3D生成,可编辑、能试玩
DiT架构大一统:一个框架集成图像、视频、音频和3D生成,可编辑、能试玩基于 Diffusion Transformer(DiT)又迎来一大力作「Flag-DiT」,这次要将图像、视频、音频和 3D「一网打尽」。
基于 Diffusion Transformer(DiT)又迎来一大力作「Flag-DiT」,这次要将图像、视频、音频和 3D「一网打尽」。
最少只需1个3D样例,即可生成3D主题乐园。
芝麻粒大小的人脑组织,突触规模就相当于一个GPT-4!
最快5分钟,打造一个直接上岗工作的3D数字人。
Sora刚发布后没多久,火眼金睛的网友们就发现了不少bug,比如模型对物理世界知之甚少,小狗在走路的时候,两条前腿就出现了交错问题,让人非常出戏。 对于生成视频的真实感来说,物体的交互非常重要,但目前来说,合成真实3D物体在交互中的动态行为仍然非常困难。
如今的生成式AI在人工智能领域迅猛发展,在计算机视觉中,图像和视频生成技术已日渐成熟,如Midjourney、Stable Video Diffusion [1]等模型广泛应用。然而,三维视觉领域的生成模型仍面临挑战。
传统的 3D 重建算法需要不同视角拍摄的多张图片作为输入从而重建出 3D 场景。近年来,有相当多的工作尝试从单张图片构建 3D 场景。然而,绝大多数此类工作都依赖生成式模型(如 Stable Diffusion),换句话说,此类工作仍然需要通过预训练的生成式模型推理场景中的 3D 信息。
想象一下,你仅需要输入一段简单的文本描述,就可以生成对应的 3D 数字人动画的骨骼动作。而以往,这通常需要昂贵的动作捕捉设备或是专业的动画师逐帧绘制。这些骨骼动作可以进一步的用于游戏开发,影视制作,或者虚拟现实应用。来自阿尔伯塔大学的研究团队提出的新一代 Text2Motion 框架,MoMask,正在让这一切变得可能。
高斯溅射(Gaussian Splatting)在新视角合成领域掀起了一轮革命性浪潮,取代上一代技术神经辐射场(NeRF)成为学界业界顶流
自 2020 年神经辐射场 (Neural Radiance Field, NeRF) 提出以来,将隐式表达推上了一个新的高度。作为当前最前沿的技术之一