
大模型套壳祛魅
大模型套壳祛魅本文探讨了大模型套壳的问题,解释了大模型的内核和预训练过程。同时,介绍了“原创派”和“模仿派”两种预训练框架的差异,并讨论了通过“偷”聊天模型数据进行微调的现象。最后,提出了把“壳”做厚才是竞争力的观点。
来自主题: AI资讯
6208 点击 2024-01-04 09:53
本文探讨了大模型套壳的问题,解释了大模型的内核和预训练过程。同时,介绍了“原创派”和“模仿派”两种预训练框架的差异,并讨论了通过“偷”聊天模型数据进行微调的现象。最后,提出了把“壳”做厚才是竞争力的观点。
作者重点关注了基于 Transformer 的 LLM 模型体系结构在从预训练到推理的所有阶段中优化长上下文能力的进展。
今天分享一篇符尧大佬的一篇数据工程(Data Engineering)的文章,解释了speed of grokking指标是什么,分析了数据工程
化学反应是药物设计和有机化学研究的基础。研究界越来越需要一种能够有效捕获化学反应基本规则的大规模深度学习框架。