
英伟达揭示RL Scaling魔力!训练步数翻倍=推理能力质变,小模型突破推理极限
英伟达揭示RL Scaling魔力!训练步数翻倍=推理能力质变,小模型突破推理极限强化学习(RL)到底是语言模型能力进化的「发动机」,还是只是更努力地背题、换个方式答题?这个问题,学界争论已久:RL 真能让模型学会新的推理技能吗,还是只是提高了已有知识的调用效率?
强化学习(RL)到底是语言模型能力进化的「发动机」,还是只是更努力地背题、换个方式答题?这个问题,学界争论已久:RL 真能让模型学会新的推理技能吗,还是只是提高了已有知识的调用效率?
GPT 系列模型的记忆容量约为每个参数 3.6 比特。
上个月 21 号,Google I/O 2025 开发者大会可说是吸睛无数,各种 AI 模型、技术、工具、服务、应用让人目不暇接。在这其中,Gemini Diffusion 绝对算是最让人兴奋的进步之一。从名字看得出来,这是一个采用了扩散模型的 AI 模型,而这个模型却并非我们通常看到的扩散式视觉生成模型,而是一个地地道道的语言模型!
首个专为ALLMs(音频大语言模型)设计的多维度可信度评估基准来了。
大语言模型(LLMs)作为由复杂算法和海量数据驱动的产物,会不会“无意中”学会了某些类似人类进化出来的行为模式?这听起来或许有些大胆,但背后的推理其实并不难理解:
随着大语言模型 (LLM) 的出现,扩展 Transformer 架构已被视为彻底改变现有 AI 格局并在众多不同任务中取得最佳性能的有利途径。因此,无论是在工业界还是学术界,探索如何扩展 Transformer 模型日益成为一种趋势。
近年来,大语言模型(LLMs)的能力突飞猛进,但随之而来的隐私风险也逐渐浮出水面。
近段时间,已经出现了不少基于扩散模型的语言模型,而现在,基于扩散模型的视觉-语言模型(VLM)也来了,即能够联合处理视觉和文本信息的模型。今天我们介绍的这个名叫 LaViDa,继承了扩散语言模型高速且可控的优点,并在实验中取得了相当不错的表现。
近年来,语言模型技术迅速发展,然而代表性成果如Gemini 2.5Pro和GPT-4.1,逐渐被谷歌、OpenAI等科技巨头所垄断。
文章探讨AI时代深度思考的困境:大语言模型使人类思维系统萎缩,即时生成内容取代有机思考过程,削弱直觉与思辨力。作者以自身创作瓶颈为例,指出依赖AI导致认知基础流失,廉价知识无法替代深层理解,强调原始思考过程的价值,认为未经修饰的人类思考仍有独特意义。