斯坦福重磅,突破小规模语料瓶颈,EntiGraph合成数据增强算法让LLM更聪明
斯坦福重磅,突破小规模语料瓶颈,EntiGraph合成数据增强算法让LLM更聪明如何处理小众数据,如何让这些模型高效地学习专业领域的知识,一直是一个挑战。斯坦福大学的研究团队最近提出了一种名为EntiGraph的合成数据增强算法,为这个问题带来了新的解决思路。
如何处理小众数据,如何让这些模型高效地学习专业领域的知识,一直是一个挑战。斯坦福大学的研究团队最近提出了一种名为EntiGraph的合成数据增强算法,为这个问题带来了新的解决思路。
说好的AI给人类打工呢? 为了拿到新数据、训练AI大模型,字节等互联网大厂正在亲自下场,以单次300元不等的价格招募“AI录音员”,定制语料库。
如今一场席卷人工智能圈的“石油危机”已经出现,几乎每一家AI厂商都在竭力寻求新的语料来源,但再多的数据似乎也填不满AI大模型的胃口。更何况越来越多的内容平台意识到了手中数据的价值,纷纷开始敝帚自珍。为此,“合成数据”也成为了整个AI行业探索的新方向。
「原来以为语料已经匮乏了,大模型训练已经没有语料了,实际上不是的,数据还远远没有跑光」。
推动金融大模型高质量发函,关键是要妥善处理好通用模型与专用模型、模型能力与语料输入、模型应用与金融监管三大关系。
在以英语为主的语料库上训练的多语言LLM,是否使用英语作为内部语言?对此,来自EPFL的研究人员针对Llama 2家族进行了一系列实验。
如今各路AI厂商围绕语料这个资源,可谓是各显神通。
无论投资界还是产业界,已经没有人质疑AI的兴起是大事件。但无论是谁,奥特曼或者霍夫曼,都无法确定AI领域的投资最终如何获利。
过去一年,AI大模型无疑是科技行业中最亮眼的主角,从FAAMG到BAT、再到一众初创企业,无数优秀的大脑、海量的资源都投入到了这个有望解放人类生产力的赛道中。
语言建模领域的最新进展在于在极大规模的网络文本语料库上预训练高参数化的神经网络。在实践中,使用这样的模型进行训练和推断可能会成本高昂,这促使人们使用较小的替代模型。然而,已经观察到较小的模型可能会出现饱和现象,表现为在训练的某个高级阶段性能下降并趋于稳定。