
DeepSeek团队新作:把代码变成思维链,大模型推理各种能力全面提升
DeepSeek团队新作:把代码变成思维链,大模型推理各种能力全面提升用代码训练大模型思考,其他方面的推理能力也能提升。
用代码训练大模型思考,其他方面的推理能力也能提升。
AI具备的能力,本质上来自算法和训练大模型所用的数据,数据的数量和质量会对大模型起到决定性作用。此前OpenAI工作人员表示,因没有足够多的高质量数据,Orion项目(即GPT-5)进展缓慢。不得已之下,OpenAI招募了许多数学家、物理学家、程序员原创数据,用于训练大模型。
Fine-tuning理论上很复杂,但是OpenAI把这个功能完善到任何一个人看了就能做出来的程度。我们先从原理入手,你看这张图,左边是Pre-trained LLM (预训练大模型模型),也就是像ChatGPT这样的模型;右边是Fine-tuned LLM (微调过的语言大模型),中间就是进行微调的过程,它需要我们提供一些「ChatGPT提供不了但是我们需要的东西」。
让大模型能快速、准确、高效地吸收新知识!
随着LLM的进步,它将超越代码补全(“Copilot”)的功能,进入代码创作(“Autopilot”)的领域。随着LLM变得越来越复杂,它们能够释放的经济价值也会越来越大。AGI的经济价值仅受我们的想象力限制。
近年来,Transformer等预训练大模型在语言理解及生成等领域表现出色,大模型背后的Scaling Law(规模定律)进一步揭示了模型性能与数据量、算力之间的关系,强化了数据在提升AI表现中的关键作用。
自从大型 Transformer 模型逐渐成为各个领域的统一架构,微调就成为了将预训练大模型应用到下游任务的重要手段
众所周知,大语言模型的训练常常需要数月的时间,使用数百乃至上千个 GPU。以 LLaMA2 70B 模型为例,其训练总共需要 1,720,320 GPU hours。由于这些工作负载的规模和复杂性,导致训练大模型存在着独特的系统性挑战。
如果让你在互联网上给大模型选一本中文教材,你会去哪里取材?是知乎,是豆瓣,还是微博?一个研究团队为了构建高质量的中文指令微调数据集,对这些社交媒体进行了测试,想找到训练大模型最好的中文预料,结果答案保证让你大跌眼镜——
2022 年底,随着 ChatGPT 的爆火,人类正式进入了大模型时代。然而,训练大模型需要的时空消耗依然居高不下,给大模型的普及和发展带来了巨大困难。面对这一挑战,原先在计算机视觉领域流行的 LoRA 技术成功转型大模型 [1][2],带来了接近 2 倍的时间加速和理论最高 8 倍的空间压缩,将微调技术带进千家万户。