
关于计算机视觉中的自回归模型,这篇综述一网打尽了
关于计算机视觉中的自回归模型,这篇综述一网打尽了随着计算机视觉领域的不断发展,自回归模型作为一种强大的生成模型,在图像生成、视频生成、3D 生成和多模态生成等任务中展现出了巨大的潜力。然而,由于该领域的快速发展,及时、全面地了解自回归模型的研究现状和进展变得至关重要。本文旨在对视觉领域中的自回归模型进行全面综述,为研究人员提供一个清晰的参考框架。
随着计算机视觉领域的不断发展,自回归模型作为一种强大的生成模型,在图像生成、视频生成、3D 生成和多模态生成等任务中展现出了巨大的潜力。然而,由于该领域的快速发展,及时、全面地了解自回归模型的研究现状和进展变得至关重要。本文旨在对视觉领域中的自回归模型进行全面综述,为研究人员提供一个清晰的参考框架。
近年来,AI for Science 发展提速,不仅为科研领域带来创新研究思路,同时也拓宽了 AI 的落地通路,为其提供了更多具有挑战性的应用场景。在这个过程中,越来越多的 AI 领域研究人员开始关注医疗、材料、生物等传统科研领域,探索其中的研究难点与行业挑战。
计算机视觉(Computer Vision)的工作原理与人类视觉类似,但需要机器依靠摄像头、数据和算法在很短的时间内完成任务。
视觉 / 激光雷达里程计是计算机视觉和机器人学领域中的一项基本任务,用于估计两幅连续图像或点云之间的相对位姿变换。它被广泛应用于自动驾驶、SLAM、控制导航等领域。最近,多模态里程计越来越受到关注,因为它可以利用不同模态的互补信息,并对非对称传感器退化具有很强的鲁棒性。
作为A股第一家AI计算机视觉上市公司,格灵深瞳在多个人工智能细分应用领域中较早完成了产品布局,目前尚处于产业化与市场拓展的发展阶段,未来能否在新应用领域实现业务拓展,将成为企业“生死存亡”的关键。
张大鹏,加拿大皇家科学院院士,加拿大工程院院士,国际电气与电子工程师协会终身会士(IEEE Fellow),国际模式识别协会会士,亚太人工智能学会会士,香港中文大学(深圳)数据科学学院校长学勤讲座教授,深圳市人工智能与机器人研究院(AIRS)计算机视觉研究中心主任,香港中文大学(深圳)—联易融计算机视觉与人工智能联合实验室主任,以及香港理工大学荣誉教授。
论文共同第一作者郑淼,来自于周泽南领导的百川对齐团队,毕业于北京大学,研究方向包括大语言模型、多模态学习以及计算机视觉等,曾主导MMFlow等开源项目。
基于图神经网络的方法被广泛应用于不同问题并且显著推动了相关领域的进步,包括但不限于数据挖掘、计算机视觉和自然语言处理。考虑到图神经网络已经取得了丰硕的成果,一篇全面且详细的综述可以帮助相关研究人员掌握近年来计算机视觉中基于图神经网络的方法的进展,以及从现有论文中总结经验和产生新的想法。
视频理解仍然是计算机视觉和人工智能领域的一个主要挑战。最近在视频理解上的许多进展都是通过端到端地训练多模态大语言模型实现的[1,2,3]。然而,当这些模型处理较长的视频时,内存消耗可能会显著增加,甚至变得难以承受,并且自注意力机制有时可能难以捕捉长程关系 [4]。这些问题阻碍了将端到端模型进一步应用于视频理解。
近年来,人物动作生成的研究取得了显著的进展,在众多领域,如计算机视觉、计算机图形学、机器人技术以及人机交互等方面获得广泛的关注。然而,现有工作大多只关注动作本身,以场景和动作类别同时作为约束条件的研究依然处于起步阶段。