
流式深度学习终于奏效了!强化学习之父Richard Sutton力荐
流式深度学习终于奏效了!强化学习之父Richard Sutton力荐自然智能(Natural intelligence)过程就像一条连续的流,可以实时地感知、行动和学习。流式学习是 Q 学习和 TD 等经典强化学习 (RL) 算法的运作方式,它通过使用最新样本而不存储样本来模仿自然学习。这种方法也非常适合资源受限、通信受限和隐私敏感的应用程序。
自然智能(Natural intelligence)过程就像一条连续的流,可以实时地感知、行动和学习。流式学习是 Q 学习和 TD 等经典强化学习 (RL) 算法的运作方式,它通过使用最新样本而不存储样本来模仿自然学习。这种方法也非常适合资源受限、通信受限和隐私敏感的应用程序。
又一科幻场景步入现实!GPT-4竟和多个AI模型私自串通一气,欲要形成垄断的资本寡头联合定价。在被哈佛PSU团队抓现行后,大模型拒不认账。未来某天,AI会不会真要失控?
最新模型增量压缩技术,一个80G的A100 GPU能够轻松加载多达50个7B模型,节省显存约8倍,同时模型性能几乎与压缩前的微调模型相当。
扩散模型的本质竟是进化算法!生物学大佬从数学的角度证实了这个结论,并结合扩散模型创建了全新的进化算法。
识别对手球队实施的关键战术模式并制定有效的应对措施是现代足球的核心。 然而,通过算法实现这一点仍然是一个开放的研究挑战。 为了解决这一未满足的需求,我们提出了 TacticAI,这是一款与利物浦足球俱乐部领域专家密切合作开发和评估的人工智能足球战术助手。
大模型在数学问题上的表现不佳,原因在于采取启发式算法进行数学运算的,通过定位到多层感知机(MLP)中的单个神经元,可以对进行数学运算的具体过程进行解释。
30多年的数学猜想首次获得了进展!Meta等学者提出的PatternBoost,使用Transformer构造了一个反例,反驳了一个已悬而未决30年的猜想。是否所有数学问题都适合机器学习技术?这样的未来太令人期待了。
AIxiv专栏是机器之心发布学术、技术内容的栏目。过去数年,机器之心AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
算法备案是所有AI从业者不得不迈过的门槛。这篇内容深入解读了中国《生成式人工智能服务安全基本要求》以及“生成式人工智能(大语言模型)上线备案”流程。
计算机视觉(Computer Vision)的工作原理与人类视觉类似,但需要机器依靠摄像头、数据和算法在很短的时间内完成任务。