小成本DeepSeek和Kimi,正攻破奥特曼的「算力护城河」
小成本DeepSeek和Kimi,正攻破奥特曼的「算力护城河」2025年前盛行的闭源+重资本范式正被DeepSeek-R1与月之暗面Kimi K2 Thinking改写,二者以数百万美元成本、开源权重,凭MoE与MuonClip等优化,在SWE-Bench与BrowseComp等基准追平或超越GPT-5,并以更低API价格与本地部署撬动市场预期,促使行业从砸钱堆料转向以架构创新与稳定训练为核心的高效路线。
2025年前盛行的闭源+重资本范式正被DeepSeek-R1与月之暗面Kimi K2 Thinking改写,二者以数百万美元成本、开源权重,凭MoE与MuonClip等优化,在SWE-Bench与BrowseComp等基准追平或超越GPT-5,并以更低API价格与本地部署撬动市场预期,促使行业从砸钱堆料转向以架构创新与稳定训练为核心的高效路线。
两人小团队,仅用两周就复刻了之前被硅谷夸疯的DeepSeek-OCR?? 复刻版名叫DeepOCR,还原了原版低token高压缩的核心优势,还在关键任务上追上了原版的表现。完全开源,而且无需依赖大规模的算力集群,在两张H200上就能完成训练。
刚刚,唯一全国产算力训出的大模型重磅升级,推理效率飙升100%,数学能力国际领先。当全球巨头还在云端「卷」算法时,中国队则亮出了软硬一体这一截然不同的底牌。
微调超大参数模型,现在的“打开方式”已经大变样了: 仅需2-4 张消费级显卡(4090),就能在本地对DeepSeek 671B乃至Kimi K2 1TB这样的超大模型进行微调了。
英伟达和谷歌,抢着上天了!
当前机器人领域,基础模型主要基于「视觉-语言预训练」,这样可将现有大型多模态模型的语义泛化优势迁移过来。但是,机器人的智能确实能随着算力和数据的增加而持续提升吗?我们能预测这种提升吗?
OpenAI的1.4万亿算力订单,正式开启大甩卖。
就在今天,OpenAI 与 AWS 官宣建立多年的战略合作伙伴关系。OpenAI 将立即并持续获得 AWS 世界级的基础设施支持,以运行其先进的 AI 工作负载。 AWS 将向 OpenAI 提供配备数十万颗芯片的 Amazon EC2 UltraServers(计算服务器),并具备将计算规模扩展至数千万个 CPU 的能力,以支持其先进的生成式 AI 任务
寒武纪成立的初衷是为「人工智能的大爆发」提供底层算力支持,不仅要硬件算力强大,更要软件通用、易用。寒武纪基础软件平台Cambricon NeuWare,让用户与开发者能够跨越不同的寒武纪硬件和应用场景,降低上手难度,提升开发效率,快速迁移与部署AI应用。
奥特曼正在用万亿美金的算力豪赌,试图买下全球GPU来喂饱「增长黑洞」。为什么AI竞争的终局不是模型,而是算力?