谷歌DeepMind「粪坑淘金」全新方法,暗网毒数据也能训出善良模型
谷歌DeepMind「粪坑淘金」全新方法,暗网毒数据也能训出善良模型谷歌DeepMind研究团队一年前的研究成果直到昨晚才姗姗揭秘,提出了一种叫做GDR的新方法,颠覆了传统训练中设法剔除脏数据的思路,将饱含恶意内容的数据「变废为宝」,处理后的数据集用于训练,甚至比直接剔除脏数据训练出的模型效果还好,「出淤泥而不染」,「择善而从」。
谷歌DeepMind研究团队一年前的研究成果直到昨晚才姗姗揭秘,提出了一种叫做GDR的新方法,颠覆了传统训练中设法剔除脏数据的思路,将饱含恶意内容的数据「变废为宝」,处理后的数据集用于训练,甚至比直接剔除脏数据训练出的模型效果还好,「出淤泥而不染」,「择善而从」。
近日,全球网络通信顶会 ACM SIGCOMM 2025 在葡萄牙落幕,共 3 篇论文获奖,华为网络技术实验室与香港科技大学 iSING Lab 合作的 DCP 研究成果,获本届大会 Best Student Paper Award (Honorable Mention),成为亚洲地域唯一获奖的论文。
这项名为 MachineLearningLM 的新研究突破了这一瓶颈。该研究提出了一种轻量且可移植的「继续预训练」框架,无需下游微调即可直接通过上下文学习上千条示例,在金融、健康、生物信息、物理等等多个领域的二分类 / 多分类任务中的准确率显著超越基准模型(Qwen-2.5-7B-Instruct)以及最新发布的 GPT-5-mini。
只要科学任务可以评分,AI就能找到超越人类专家的方法,实现SOTA结果? 这是谷歌一篇最新论文里的内容: 使用大模型+树搜索,让AI大海捞针就行。
上周,福布斯、Wired等争相报道「全球最快开源推理模型」K2-Think,,甚至图灵奖得主Yann LeCun转发推文。但仅三天后,ETH五位研究员的博客如晴天霹雳:87数学评估题竟藏在训练集中!这不仅仅是技术突破,更是行业诚信的警钟。
人类的大脑,会在梦里筛选记忆。如今,AI也开始学会在「睡眠」中整理、保存,甚至遗忘。Bilt部署数百万智能体,让科幻小说里的设问——「仿生人会梦见电子羊吗?」——逐步成真。那么,当AI也能选择忘记时,它会变得更像人,还是更陌生?
很多人认为,Scaling Law 正在面临收益递减,因此继续扩大计算规模训练模型的做法正在被质疑。最近的观察给出了不一样的结论。研究发现,哪怕模型在「单步任务」上的准确率提升越来越慢,这些小小的进步叠加起来,也能让模型完成的任务长度实现「指数级增长」,而这一点可能在现实中更有经济价值。
让数字人的口型随着声音一开一合早已不是新鲜事。更令人期待的,是当明快的旋律响起,它会自然扬起嘴角,眼神含笑;当进入说唱段落,它会随着鼓点起伏,肩膀与手臂有节奏地带动气氛。
生成式AI的快与好,终于能兼得了?
随着Agent的爆发,大型语言模型(LLM)的应用不再局限于生成日常对话,而是越来越多地被要求输出像JSON或XML这样的结构化数据。这种结构化输出对于确保安全性、与其他软件系统互操作以及执行下游自动化任务至关重要。