复刻Sora的通用视频生成能力,开源多智能体框架Mora来了
复刻Sora的通用视频生成能力,开源多智能体框架Mora来了自理海大学、微软研究院的研究者提出了一种多智能体框架 Mora,该框架整合了几种先进的视觉 AI 智能体,以复制 Sora 所展示的通用视频生成能力。
自理海大学、微软研究院的研究者提出了一种多智能体框架 Mora,该框架整合了几种先进的视觉 AI 智能体,以复制 Sora 所展示的通用视频生成能力。
具身基础模型突破2D,全新生成式视觉-语言-行动模型3D-VLA,在多项任务中显著提高了推理、多模态生成和规划的能力。
简笔素描一键变身多风格画作,还能添加额外的描述,这在 CMU、Adobe 联合推出的一项研究中实现了。作者之一为 CMU 助理教授朱俊彦,其团队在 ICCV 2021 会议上发表过一项类似的研究:仅仅使用一个或数个手绘草图,即可以自定义一个现成的 GAN 模型,进而输出与草图匹配的图像。
3D 生成领域迎来新的「SOTA 级选手」,支持商用和非商用。Stability AI 的大模型家族来了一位新成员。昨日,Stability AI 继推出文生图 Stable Diffusion、文生视频 Stable Video Diffusion 之后,又为社区带来了 3D 视频生成大模型「Stable Video 3D」(简称 SV3D)。
根据scaling law,模型越大,高质量数据越多,效果越好。 但还有一个很直观的情况,随着预训练样本的质量不断提升,训练手段的优化。新的模型,往往效果能轻松反超参数量两倍于它的模型。
【新智元导读】利用文本生成图片(Text-to-Image, T2I)已经满足不了人们的需要了,近期研究在T2I模型的基础上引入了更多类型的条件来生成图像,本文对这些方法进行了总结综述。
以脉冲神经网络(SNN)为代表的脑启发神经形态计算(neuromorphic computing)由于计算上的节能性质在最近几年受到了越来越多的关注 [1]。受启发于人脑中的生物神经元,神经形态计算通过模拟并行的存内计算、基于脉冲信号的事件驱动计算等生物特性,能够在不同于冯诺依曼架构的神经形态芯片上以低功耗实现神经网络计算。
Fast-DetectGPT 同时做到了高准确率、高速度、低成本、通用,扫清了实际应用的障碍!
哈工大联合度小满推出针对多模态模型的自适应剪枝算法 SmartTrim,论文已被自然语言处理顶级会议 COLING 24 接收。
最近,OpenAI CTO Murati接受采访时,对Sora训练数据语焉不详、支支吾吾的表现,已经成了全网热议的话题。毕竟,要是一个处理不好,OpenAI就又要陷入巨额赔偿金的诉讼之中了。