用慢思考提升模型安全性,北交大、鹏城实验室提出系统2对齐
用慢思考提升模型安全性,北交大、鹏城实验室提出系统2对齐OpenAI 在 “双十二” 发布会的最后一天公开了 o 系列背后的对齐方法 - deliberative alignment,展示了通过系统 2 的慢思考能力提升模型安全性的可行性。
OpenAI 在 “双十二” 发布会的最后一天公开了 o 系列背后的对齐方法 - deliberative alignment,展示了通过系统 2 的慢思考能力提升模型安全性的可行性。
新年第一天,陈天奇团队的FlashInfer论文出炉!块稀疏、可组合、可定制、负载均衡......更快的LLM推理技术细节全公开。
由无问芯穹与上海交通大学联合研究团队提出的视频生成软硬一体加速器,首次实现通过差分近似和自适应数据流解决 VDiT 生成速度缓慢瓶颈,推理速度相比 A100 提升高达 16.44 倍。
ChatGPT等聊天机器人背后的算法能从各种各样的网络文本中抓取万亿字节的素材,文本来源可以是网络文章,也可以是社媒平台的帖子,还可以是视频里的字幕或评论。
近年来视觉语⾔基础模型(Vision Language Models, VLMs)在多模态理解和⾼层次常识推理上⼤放异彩,如何将其应⽤于机器⼈以实现通⽤操作是具身智能领域的⼀个核⼼问题。这⼀⽬标的实现受两⼤关键挑战制约:
仅使用20K合成数据,就能让Qwen模型能力飙升——
可灵,视频生成领域的佼佼者,近来动作不断。继发布可灵 1.6 后,又公开了多项研究揭示视频生成的洞察与前沿探索 ——《快手可灵凭什么频繁刷屏?揭秘背后三项重要研究》。
模型蒸馏也有「度」,过度蒸馏,只会导致模型性能下降。最近,来自中科院、北大等多家机构提出全新框架,从两个关键要素去评估和量化蒸馏模型的影响。结果发现,除了豆包、Claude、Gemini之外,大部分开/闭源LLM蒸馏程度过高。
该技术报告的主要作者 Lu Wang, Fangkai Yang, Chaoyun Zhang, Shilin He, Pu Zhao, Si Qin 等均来自 Data, Knowledge, and Intelligence (DKI) 团队,为微软 TaskWeaver, WizardLLM, Windows GUI Agent UFO 的核心开发者。
我亲眼见证了数据量的爆炸式增长以及行业的巨额投入。当时就很明显,AI是推动这些数据增长背后的关键动力。那是一个非常有趣的时刻——Meta正在完成“移动优先”的过渡,开始迈向“AI 优先”。