
AI生成苹果Metal内核,PyTorch推理速度提升87%
AI生成苹果Metal内核,PyTorch推理速度提升87%AI自动生成的苹果芯片Metal内核,比官方的还要好?
AI自动生成的苹果芯片Metal内核,比官方的还要好?
近日,快手与清华大学孙立峰团队联合发表论文《Towards User-level QoE: Large-scale Practice in Personalized Optimization of Adaptive Video Streaming》,被计算机网络领域的国际顶尖学术会议 ACM SIGCOMM 2025 录用。
您对“思维链”(Chain-of-Thought)肯定不陌生,从最早的GPT-o1到后来震惊世界的Deepseek-R1,它通过让模型输出详细的思考步骤,确实解决了许多复杂的推理问题。但您肯定也为它那冗长的输出、高昂的API费用和感人的延迟头疼过,这些在产品落地时都是实实在在的阻碍。
LLM.265研究发现,视频编码器本身就是一种高效的大模型张量编码器。原本用于播放8K视频的现成视频编解码硬件,其实压缩AI模型数据的效率也非常高,甚至超过了许多专门为AI开发的方案。该工作已被世界微架构大会MICRO-2025正式接收,相关成果将于今年10月在首尔进行展示与讨论。
许多研究者在参加学术会议前,常常会因为制作海报所耗费的大量时间和精力而感到困扰。一张精心设计的海报是高效的学术交流媒介,但现有自动化方法普遍忽略了核心设计原则,导致生成的海报仍旧需要大量人工调整。
在大多数人眼中,《我的世界》(Minecraft)只是一款自由度极高的沙盒游戏。 而在香港科技大学(广州)与腾讯联合团队的眼中,它却是一座可以演练通用人工智能的“数字练兵场”。
在长周期、多步骤的协作任务中,传统单智能体往往面临着任务成功率随步骤长度快速衰减,错误级联导致容错率极低等问题。
训练大模型时,有时让它“记性差一点”,反而更聪明! 大语言模型如果不加约束,很容易把训练数据原封不动地复刻出来。为解决这个问题,来自马里兰大学、图宾根大学和马普所的研究团队提出了一个新方法——金鱼损失(Goldfish Loss)。
训练大模型时,有时让它“记性差一点”,反而更聪明!
这几天,一篇关于向量嵌入(Vector Embeddings)局限性的论文在 AlphaXiv 上爆火,热度飙升到了近 9000。