
大模型推理的“左右脑”革命!华为盘古Embedded凭昇腾之力,让快慢思考合二为一
大模型推理的“左右脑”革命!华为盘古Embedded凭昇腾之力,让快慢思考合二为一孙子兵法有云:“故其疾如风,其徐如林”,意指在行进迅速时,如狂风飞旋;而在行进从容时,如森林徐徐展开。
孙子兵法有云:“故其疾如风,其徐如林”,意指在行进迅速时,如狂风飞旋;而在行进从容时,如森林徐徐展开。
1+1等于几?
近年来,思维链在大模型训练和推理中愈发重要。近日,西湖大学 MAPLE 实验室齐国君教授团队首次提出扩散式「发散思维链」—— 一种面向扩散语言模型的新型大模型推理范式。该方法将反向扩散过程中的每一步中间结果都看作大模型的一个「思考」步骤,然后利用基于结果的强化学习去优化整个生成轨迹,最大化模型最终答案的正确率。
在今年 2 月的 DeepSeek 开源周中,大模型推理过程中并行策略和通信效率的深度优化成为重点之一。在今年 2 月的 DeepSeek 开源周中,大模型推理过程中并行策略和通信效率的深度优化成为重点之一。
不再依赖语言,仅凭图像就能完成模型推理?
在当前大模型推理愈发复杂的时代,如何快速、高效地产生超长文本,成为了模型部署与优化中的一大核心挑战。
一年之内,大模型推理训练可能就会撞墙。
当训练成本飙升、数据枯竭,如何继续激发大模型潜能?
在人工智能领域,推理能力的进化已成为通向通用智能的核心挑战。近期,Reinforcement Learning with Verifiable Rewards(RLVR)范式下涌现出一批「Zero」类推理模型,摆脱了对人类显式推理示范的依赖,通过强化学习过程自我学习推理轨迹,显著减少了监督训练所需的人力成本。
扩散模型(Diffusion Models)近年来在生成任务上取得了突破性的进展,不仅在图像生成、视频合成、语音合成等领域都实现了卓越表现,推动了文本到图像、视频生成的技术革新。然而,标准扩散模型的设计通常只适用于从随机噪声生成数据的任务,对于图像翻译或图像修复这类明确给定输入和输出之间映射关系的任务并不适合。