
对话言创万物创始人:AI Coding 是在「垒砖」,我们想用 AI「盖房子」
对话言创万物创始人:AI Coding 是在「垒砖」,我们想用 AI「盖房子」AI Coding 或者 Coding Agent,或许是当下最火热的 AI 赛道。这是模型能力的主线,更强的代码能力,意味着模型能够解锁更多应用场景。
AI Coding 或者 Coding Agent,或许是当下最火热的 AI 赛道。这是模型能力的主线,更强的代码能力,意味着模型能够解锁更多应用场景。
这样复杂精致的视频效果,都是AI生成的?都是最新国产AI大模型的新能力??
最近,我的AI交流群和别的一些AI群都炸锅了,话题的焦点是MiniMax-M1
昨天深夜,月之暗面发布了开源代码模型Kimi-Dev-72B。这个模型在软件工程任务基准测试SWE-bench Verified上取得了60.4%的成绩,创下开源模型新纪录,超越了包括DeepSeek在内的多个竞争对手。
近年来,大型语言模型(LLM)在处理复杂任务方面取得了显著进展,尤其体现在多步推理、工具调用以及多智能体协作等高级应用中。这些能力的提升,往往依赖于模型内部一系列复杂的「思考」过程或 Agentic System 中的 Agent 间频繁信息交互。
原生并行生成不仅仅是加速,它是我们对 LLM 推理思考方式的根本转变。
ZPressor能高效压缩3D高斯泼溅(3DGS)模型的多视图输入,解决其在处理密集视图时的性能瓶颈,提升渲染效率和质量。
您有没有这样的体验?一天的工作里,您可能用GPTo3写了个方案,然后切换到Cursor或者Trae里写代码,接着又打开Notion或者飞书整理文档。每个工具都挺聪明,但它们彼此之间就像生活在平行宇宙——写方案的GPT不知道您后来写了什么代码,写代码的Cursor也不清楚您的整体规划是什么。
本文主要作者是 Bytedance Pico 北美高级研究员胡涛博士,近年来研究领域包括3D 重建与 4D 场景和视频生成,致力于得到一种最佳的物理世界表示模型。
当前数学领域的数据生成方法常常局限于对单个问题进行改写或变换,好比是让学生反复做同一道题的变种,却忽略了数学题目之间内在的关联性。