DeepMind再登Nature:AI Agent造出了最强RL算法!
DeepMind再登Nature:AI Agent造出了最强RL算法!当AI开始「自己学会学习」,人类的角色正在被重写。DeepMind最新研究DiscoRL,让智能体在多环境交互中自主发现强化学习规则——无需人类设计算法。它在Atari基准中击败MuZero,在从未见过的游戏中依旧稳定高效。
当AI开始「自己学会学习」,人类的角色正在被重写。DeepMind最新研究DiscoRL,让智能体在多环境交互中自主发现强化学习规则——无需人类设计算法。它在Atari基准中击败MuZero,在从未见过的游戏中依旧稳定高效。
当强大的多模态大语言模型应用于地球科学研究时,它面临着无法忽视的 「阿克琉斯之踵」
近期,DeepSeek-OCR提出了“Vision as Context Compression”的新思路,然而它主要研究的是通过模型的OCR能力,用图片压缩文档。
人眼秒懂,AI抓瞎!网友用光学错觉玩坏大模型,全网百万人围观。
能看懂相机参数,并且生成相应视角图片的多模态模型来了。
周日晚上,都准备去睡觉了。结果在 X 上刷到一条消息,有个国外的博主说,MiniMax 的 M2 模型将会成为中国最好的模型,与 Sonnet 4.5 旗鼓相当。 我当时心里咯噔一下。MiniMax?
具身智能是近年来非常火概念。一个智能体(比如人)能够在环境中完成感知、理解与决策的闭环,并通过环境反馈不断进入新一轮循环,直至任务完成。这一过程往往依赖多种技能,涵盖了底层视觉对齐,空间感知,到上层决策的不同能力,这些能力便是广义上的具身智能。
让AI懂地理,它才会走得更远。GeoEvolve让AI从助理变成「地理学博士生」,自己修bug、改算法、进化模型——这下,科学家可能真的要有个AI同事了。MIT和斯坦福学者提出了GeoEvolve,尝试了这样一种探索:
近日,在 CNCC2025 大会上,郑波首次公开了淘宝全模态大模型的最新进展,并系统介绍了多模态智能在淘宝 AIGX 技术体系的研究应用。另外,结合 AI 模型技术在淘宝应用中的实践,他认为,「狭义 AGI 很可能在 5-10 年内到来。」
刚刚,不发论文、爱发博客的 Thinking Machines Lab (以下简称 TML)再次更新,发布了一篇题为《在策略蒸馏》的博客。在策略蒸馏(on-policy distillation)是一种将强化学习 (RL) 的纠错相关性与 SFT 的奖励密度相结合的训练方法。在将其用于数学推理和内部聊天助手时,TML 发现在策略蒸馏可以极低的成本超越其他方法。