
近期必读!Devin VS Anthropic 的多智能体构建方法论
近期必读!Devin VS Anthropic 的多智能体构建方法论昨天最热的的两篇文章是关于多智能体系统构建的讨论。 先是 Anthropic 发布了他们在深度搜索多智能体构建过程中的一些经验,具体:包括多智能体系统的优势、架构概览、提示工程与评估、智能体的有效评估等方面。
昨天最热的的两篇文章是关于多智能体系统构建的讨论。 先是 Anthropic 发布了他们在深度搜索多智能体构建过程中的一些经验,具体:包括多智能体系统的优势、架构概览、提示工程与评估、智能体的有效评估等方面。
自Agent火了以后,有关"记忆"的框架如雨后春笋般涌现,但绝大多数仍是为"单兵作战"设计,难以适应需要复杂协作、信息交互量暴增10倍的多智能体系统(MAS)
AI 决策的可靠性与安全性是其实际部署的核心挑战。当前智能体广泛依赖复杂的机器学习模型进行决策,但由于模型缺乏透明性,其决策过程往往难以被理解与验证,尤其在关键场景中,错误决策可能带来严重后果。因此,提升模型的可解释性成为迫切需求。
生成式AI提升内容效率并重塑营销洞察,但品牌本质(用户价值)不变。企业需聚焦垂直数据沉淀、AI原生工作流改造(非仅工具应用),并应对一把手认知不足及组织转型挑战
2025年,是Agent按下加速键的一年。
研究多智能体必读指南。Anthropic 发布了他们如何使用多个 Claude AI 智能体构建多智能体研究系统的精彩解释。
2025 年,是 Agent 按下加速键的一年。
越通用,就越World Models。 我们知道,大模型技术爆发的原点可能在谷歌一篇名为《Attention is All You Need》的论文上。
43岁程序员常高伟辞职创立ANP协议,旨在实现AI智能体开放互联。初期遭遇质疑和孤独,后因行业协议热潮获关注,他建立最大中文协议社区,获W3C等组织认可。其开放生态理念吸引多方支持,正在推动智能体互联网基础设施建设。
为了推动该领域加速健康发展,由上海交通大学、上海 AI 实验室、牛津大学、普林斯顿大学、Meta 等十个机构联合推出的 MASLab,带来首个统一、全面、研究友好的大模型多智能体系统代码库: