强化学习教父重出江湖, 生成式AI的时代要结束了?
强化学习教父重出江湖, 生成式AI的时代要结束了?过去两年,AI靠模仿人类席卷世界。但强化学习之父Richard Sutton却说:「GenAI的时代正在结束。」他带着图灵奖的荣光,加入一家几乎没人听过的公司——ExperienceFlow.AI,他要让AI不靠人类数据喂养,而靠「经验」觉醒。
过去两年,AI靠模仿人类席卷世界。但强化学习之父Richard Sutton却说:「GenAI的时代正在结束。」他带着图灵奖的荣光,加入一家几乎没人听过的公司——ExperienceFlow.AI,他要让AI不靠人类数据喂养,而靠「经验」觉醒。
现在AI都懂文物懂历史了。一项来自北京大学的最新研究引发关注:他们推出了全球首个面向古希腊陶罐的3D视觉问答数据集——VaseVQA-3D,并配套推出了专用视觉语言模型VaseVLM。这意味着,AI正在从“识图机器”迈向“文化考古Agent”。
奥特曼称GPT-6或让「AI创造新科学」成真。与此呼应,类「AI科学家」Kosmos登场:12小时读1500篇文献、跑4.2万行代码,生成可溯源报告,并在材料等方向提出新发现。它凭持续记忆自主规划,正由工具迈向合作者;但受数据来源与复现性制约,约20%结论仍需人类裁判。人机协作或将重塑科研,科研范式加速演进,前景可期。
Solix Technologies最近推出了企业AI,据称这是业界首个第四代数据平台。Solix表示,通过将先进的数据管理功能集成到单一平台中,它可以提供企业成功利用AI所需的干净、可信和受治理的数据。
2025年11月4日,一家总部位于英国伦敦的人工智能公司Stability AI,赢得了一项具有里程碑意义的高等法院案件,该案审查了人工智能模型在未经许可的情况下使用大量受版权保护数据的合法性。而本案的原告,Getty Images 在针对人工智能公司 Stability AI 图像生成产品的英国诉讼中基本败诉。
随着生成式 AI(如 Sora)的发展,合成视频几乎可以以假乱真,带来了深度伪造与虚假信息传播的风险。现有检测方法多依赖表层伪影或数据驱动学习,难以在高质量生成视频中保持较好的泛化能力。其根本原因在于,这些方法大都未能充分利用自然视频所遵循的物理规律,挖掘自然视频的更本质的特征。
静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。
如今,一位软件工程师 Teja Kusireddy 用数据扯开了这场“繁荣”背后的部分真相。他对 200 家 AI 公司进行了逆向工程、反编译代码,并追踪 API 调用,发现许多号称“颠覆性创新”的公司,其核心功能仍依赖第三方服务,只是在外层多套了一层“创新”的壳。市场宣传与实际情况之间的差距令人震惊。
当前机器人领域,基础模型主要基于「视觉-语言预训练」,这样可将现有大型多模态模型的语义泛化优势迁移过来。但是,机器人的智能确实能随着算力和数据的增加而持续提升吗?我们能预测这种提升吗?
近期,Google DeepMind 发布新一代具身大模型 Gemini Robotics 1.5,其核心亮点之一便是被称为 Motion Transfer Mechanism(MT)的端到端动作迁移算法 —— 无需重新训练,即可把不同形态机器人的技能「搬」到自己身上。不过,官方技术报告对此仅一笔带过,细节成谜。