英特尔放大招:新制程、能效核一起上,144核的至强6,性能成倍提升
英特尔放大招:新制程、能效核一起上,144核的至强6,性能成倍提升今日,英特尔推出英特尔® 至强® 6能效核处理器,每个 CPU 拥有多达 144 个内核,机架密度提高达3倍1,以高性能、高密度、高能效和低TCO,满足多样的云级工作负载,是数据中心高效能之选。
今日,英特尔推出英特尔® 至强® 6能效核处理器,每个 CPU 拥有多达 144 个内核,机架密度提高达3倍1,以高性能、高密度、高能效和低TCO,满足多样的云级工作负载,是数据中心高效能之选。
音频生成领域又有好消息:刚刚,Stability AI 宣布推出开放模型 Stable Audio Open,该模型能够生成高质量的音频数据。
CRATE-α是一种新型Transformer架构变体,通过设计改进提升了模型的可扩展性、性能和可解释性,CRATE-α-Base在ImageNet分类任务上的性能显著超过了之前最好的CRATE-B模型,其性能会随着模型和数据集规模扩大而继续提升。
天津大学与南京大学联合团队在CVPR 2024上发表了LPSNet项目,提出了一种端到端的无透镜成像下的3D人体姿态和形状估计框架,通过多尺度无透镜特征解码器和双头辅助监督机制,直接从编码后的无透镜成像数据中提取特征并提高姿态估计的准确度。
抄袭框架和预训练数据的情况,是更狭义的套壳。
就算是 OpenAI 在舆论场也无法逃过版权保护的呼声。
众所周知,对于 Llama3、GPT-4 或 Mixtral 等高性能大语言模型来说,构建高质量的网络规模数据集是非常重要的。然而,即使是最先进的开源 LLM 的预训练数据集也不公开,人们对其创建过程知之甚少。
华南理工大学和香港大学的研究人员在ICML 2024上提出了一个简单而通用的时空提示调整框架FlashST,通过轻量级的时空提示网络和分布映射机制,使预训练模型能够适应不同的下游数据集特征,显著提高了模型在多种交通预测场景中的泛化能力。
在复杂的物理世界中,人型机器人的全身控制一直是个难题,现有的强化学习做出的效果有时会比较抽象。近日,LeCun参与的一项工作给出了基于数据驱动的全新解决方案。
一般而言,训练神经网络耗费的计算量越大,其性能就越好。在扩大计算规模时,必须要做个决定:是增多模型参数量还是提升数据集大小 —— 必须在固定的计算预算下权衡此两项因素。