「开源类脑芯片」二代发布!支持反向传播突触学习规则和并行神经元计算
「开源类脑芯片」二代发布!支持反向传播突触学习规则和并行神经元计算在今年1月《Journal of Supercomputing》上开源的「开源类脑芯片」二代(Polaris 23)完整版本源代码,基于RISC-V架构,支持脉冲神经网络(SNN)和反向传播STDP。该芯片通过并行架构显著提升神经元和突触处理能力,带宽和能效大幅提升,MNIST数据集准确率达91%。
在今年1月《Journal of Supercomputing》上开源的「开源类脑芯片」二代(Polaris 23)完整版本源代码,基于RISC-V架构,支持脉冲神经网络(SNN)和反向传播STDP。该芯片通过并行架构显著提升神经元和突触处理能力,带宽和能效大幅提升,MNIST数据集准确率达91%。
数字化时代,视频内容的创作与编辑需求日益增长。从电影制作到社交媒体,高质量的视频编辑技术成为了行业的核心竞争力之一。然而,视频重打光(video relighting)—— 即对视频中的光照条件进行调整和优化,一直是这一领域的技术瓶颈。传统的视频重打光方法面临着高昂的训练成本和数据稀缺的双重挑战,导致其难以广泛应用。
AI生成内容已深度渗透至生活的方方面面,从艺术创作到设计领域,再到信息传播与版权保护,其影响力无处不在。
随着金融机构和专业人士越来越多地将大语言模型(LLMs)纳入其工作流程中,金融领域与人工智能社区之间依然存在显著障碍,包括专有数据和专业知识的壁垒。本文提出了 FinRobot,一种支持多个金融专业化人工智能智能体的新型开源 AI 智能体平台,每个代理均由 LLM 提供动力。
人工智能众包工作初创公司Invisible Technologies取得了巨大成功。而今,其创始人正拿它当作抵押进行借款,好买断其风投支持者的股份。
RedStone是一个高效构建大规模指定领域数据的处理管道,通过优化数据处理流程,从Common Crawl中提取了RedStone-Web、RedStone-Code、RedStone-Math和RedStone-QA等数据集,在多项任务中超越了现有开源数据集,显著提升了模型性能。
强化学习训练数据越多,模型推理能力就越强?新研究提出LIM方法,揭示提升推理能力的关键在于优化数据质量,而不是数据规模。该方法在小模型上优势尽显。从此,强化学习Scaling Law可能要被改写了!
这次不是卷参数、卷算力,而是卷“跨界学习”——
没有治理的人工智能?一场等待发生的灾难。我们经常听说数据治理和人工智能是矛盾的,一个注重控制,另一个注重速度和创新。但如果我告诉你数据治理实际上是一个人工智能加速器呢?
三星发布Galaxy S25系列,强调AI功能和数据安全。