
终于等来能塞进手机的文生图模型!十分之一体量,SnapGen实现百分百的效果
终于等来能塞进手机的文生图模型!十分之一体量,SnapGen实现百分百的效果近些年来,以 Stable Diffusion 为代表的扩散模型为文生图(T2I)任务树立了新的标准,PixArt,LUMINA,Hunyuan-DiT 以及 Sana 等工作进一步提高了图像生成的质量和效率。然而,目前的这些文生图(T2I)扩散模型受限于模型尺寸和运行时间,仍然很难直接部署到移动设备上。
近些年来,以 Stable Diffusion 为代表的扩散模型为文生图(T2I)任务树立了新的标准,PixArt,LUMINA,Hunyuan-DiT 以及 Sana 等工作进一步提高了图像生成的质量和效率。然而,目前的这些文生图(T2I)扩散模型受限于模型尺寸和运行时间,仍然很难直接部署到移动设备上。
扩散模型在可控图像生成方面取得了空前进展,包括图像修补 ,图像着色和图像编辑。基于扩散模型的生成方案可以显著降低劳动力成本,尤其是在基于参考图像序列着色任务上,它可用于漫画创作,动画制作和黑白电影着色。
在时间序列预测领域,当前主流的扩散方法还是传统的基于噪声的方法,未能充分利用自回归技术实现时间序列建模。
具备原生中文理解能力,还兼容Stable Diffusion生态。 最新模型结构Bridge Diffusion Model来了。 与Dreambooth模型结合,它生成的穿中式婚礼礼服的歪国明星长这样。
因为流匹配的公式很简单,并且生成样本的路径很直接,最近越来越受研究者们的欢迎,于是很多人都在问: 「到底是扩散模型好呢?还是流匹配好?」
近年来,扩散模型(Diffusion Models)已成为生成模型领域的研究前沿,它们在图像生成、视频生成、分子设计、音频生成等众多领域展现出强大的能力。
扩散模型和最优传输之间到底存在怎样的联系?对很多人来说还是一个未解之谜。
昨天,为大家介绍了生成式对抗网络GAN,今天再来为大家介绍另一个有趣的模型:扩散模型,包括Stability AI、OpenAI、Google Brain在内的多个研究团队基于扩散模型提出了多种创新模型,如以文生图、图像生成视频生成等~
近年来,文本到图像扩散模型为图像合成树立了新标准,现在模型可根据文本提示生成高质量、多样化的图像。然而,尽管这些模型从文本生成图像的效果令人印象深刻,但它们往往无法提供精确的控制、可编辑性和一致性 —— 而这些特性对于实际应用至关重要。
自回归方法,在图像生成中观察到了 Scaling Law。 「Scaling Law 撞墙了?」这恐怕是 AI 社区最近讨论热度最高的话题。