
你真的了解CoT?普林斯顿大学解密影响CoT效率的因素,引用5875次的CoT讲了啥
你真的了解CoT?普林斯顿大学解密影响CoT效率的因素,引用5875次的CoT讲了啥2022年,Google研究团队发表了名为《思路链提示引发大型语言模型的推理》的开创性论文,引入了思维链(Chain of Thought, CoT)prompting技术。
2022年,Google研究团队发表了名为《思路链提示引发大型语言模型的推理》的开创性论文,引入了思维链(Chain of Thought, CoT)prompting技术。
最近,新加坡国立大学联合南洋理工大学和哈工深的研究人员共同提出了一个全新的视频推理框架,这也是首次大模型推理社区提出的面向视频的思维链框架(Video-of-Thought, VoT)。视频思维链VoT让视频多模态大语言模型在复杂视频的理解和推理性能上大幅提升。该工作已被ICML 2024录用为Oral paper。
想要达成通用人工智能 AGI 的终极目标,首先要达成的是模型要能完成人类所能轻松做到的任务。为了做到这一点,大模型开发的关键指导之一便是如何让机器像人类一样思考和推理。诸如注意力机制和思维链(Chain-of-Thought)等技术正是由此产生的灵感。
不使用外部工具也能让大语言模型(LLMs)实现严谨可信的推理,新国立提出 SymbCoT 推理框架:结合符号化逻辑(Symbolic Logical)表达式与思维链,极大提升推理质量,鲁棒性与可信度。
多模态大模型,也有自己的CoT思维链了! 厦门大学&腾讯优图团队提出一种名为“领唱员(Cantor)”的决策感知多模态思维链架构,无需额外训练,性能大幅提升。
Jason Wei 是思维链提出者,并和 Yi Tay、Jeff Dean 等人合著了关于大模型涌现能力的论文。目前他正在 OpenAI 进行工作。
一直以来 AI 都是一个黑盒子(black box),其内部运作机制是不可见的。人们输入数据并得到结果,但无法检查输出结果的逻辑或者系统的代码。 而就在刚刚,Anthropic 宣布在理解人工智能模型内部运作机制方面取得重大进展。
在 AI 领域,扩展定律(Scaling laws)是理解 LM 扩展趋势的强大工具,其为广大研究者提供了一个准则,该定律在理解语言模型的性能如何随规模变化提供了一个重要指导。
红极一时的思维链技术,可能要被推翻了!
近年来,大语言模型(LLMs)由于其通用的问题处理能力而引起了大量的关注。现有研究表明,适当的提示设计(prompt enginerring),例如思维链(Chain-of-Thoughts),可以解锁 LLM 在不同领域的强大能力。