
纯靠“脑补”图像,大模型推理准确率狂飙80%丨剑桥谷歌新研究
纯靠“脑补”图像,大模型推理准确率狂飙80%丨剑桥谷歌新研究不再依赖语言,仅凭图像就能完成模型推理?
不再依赖语言,仅凭图像就能完成模型推理?
在当前大模型推理愈发复杂的时代,如何快速、高效地产生超长文本,成为了模型部署与优化中的一大核心挑战。
一年之内,大模型推理训练可能就会撞墙。
当训练成本飙升、数据枯竭,如何继续激发大模型潜能?
在人工智能领域,推理能力的进化已成为通向通用智能的核心挑战。近期,Reinforcement Learning with Verifiable Rewards(RLVR)范式下涌现出一批「Zero」类推理模型,摆脱了对人类显式推理示范的依赖,通过强化学习过程自我学习推理轨迹,显著减少了监督训练所需的人力成本。
近年来,「思维链(Chain of Thought,CoT)」成为大模型推理的显学,但要让小模型也拥有长链推理能力却非易事。
近日,无问芯穹发起了一次推理系统开源节,连续开源了三个推理工作,包括加速端侧推理速度的 SpecEE、计算分离存储融合的 PD 半分离调度新机制 Semi-PD、低计算侵入同时通信正交的计算通信重叠新方法 FlashOverlap,为高效的推理系统设计提供多层次助力。下面让我们一起来对这三个工作展开一一解读:
多模态大模型(MLLMs)在视觉理解与推理等领域取得了显著成就。然而,随着解码(decoding)阶段不断生成新的 token,推理过程的计算复杂度和 GPU 显存占用逐渐增加,这导致了多模态大模型推理效率的降低。
RTP-LLM 是阿里巴巴大模型预测团队开发的高性能 LLM 推理加速引擎。它在阿里巴巴集团内广泛应用,支撑着淘宝、天猫、高德、饿了么等核心业务部门的大模型推理需求。在 RTP-LLM 上,我们实现了一个通用的投机采样框架,支持多种投机采样方法,能够帮助业务有效降低推理延迟以及提升吞吐。
近年来,大语言模型(LLM)的性能提升逐渐从训练时规模扩展转向推理阶段的优化,这一趋势催生了「测试时扩展(test-time scaling)」的研究热潮。