Code LLM全景综述,从LLM到Agent,全文长303页,北航阿里字节等12家机构联合撰写|最新
Code LLM全景综述,从LLM到Agent,全文长303页,北航阿里字节等12家机构联合撰写|最新这篇论文由北京航空航天大学、阿里巴巴、字节跳动、上海人工智能实验室等几十家顶尖机构联合撰写,全文长达303页,是对当前“代码大模型(Code LLMs)”领域最详尽的百科全书式指南。
这篇论文由北京航空航天大学、阿里巴巴、字节跳动、上海人工智能实验室等几十家顶尖机构联合撰写,全文长达303页,是对当前“代码大模型(Code LLMs)”领域最详尽的百科全书式指南。
最近研究发现,大模型在判断逻辑谬误时容易「想太多」,误报正常句子,但在确定有谬误后,其分类能力较强。研究人员构建了首个高质量英文逻辑谬误基准SMARTYPAT-BENCH,并开发了基于Prolog的逻辑谬误自动生成框架SMARTYPAT,为大模型逻辑能力评估提供新思路,可用于谬误识别、辩论教育等领域。
昨日,有位推特博主晒出了国内几大开源模型在轻量级软件工程 Agent 基准测试 mini-SWE-agent 上的成绩。该基准主要测试大模型在真实软件开发任务中的多步推理、环境交互和工程化能力。
在人工智能快速发展的今天,大语言模型已经深入到我们工作和生活的方方面面。然而,如何让AI生成的内容更加可信、可追溯, 一直是学术界和工业界关注的焦点问题。想象一下,当你向ChatGPT提问时,它不仅给出答案,还能像学术论文一样标注每句话的信息来源——这就是"溯源大语言模型"要解决的核心问题。
近日,清华大学深圳国际研究生院的机器人博士团队创办的「知有无界」获得卓源亚洲领投、力合科创跟投的种子轮融资。「知有无界」诞生在清华大学王学谦教授的智能机器人实验室,实现了全球首个船舶具身通用大模型,本轮融资后,「知有无界」将会进一步加快在船坞的商业化落地,并持续进行多代产品的研发。
大模型最广泛的应用如 ChatGPT、Deepseek、千问、豆包、Gemini 等通常会连接互联网进行检索增强生成(RAG)来产生用户问题的答案。随着多模态大模型(MLLMs)的崛起,大模型的主流技术之一 RAG 迅速向多模态发展,形成多模态检索增强生成(MM-RAG)这个新兴领域。ChatGPT、千问、豆包、Gemini 都开始允许用户提供文字、图片等多种模态的输入。
随着大语言模型(LLM)的商业价值快速提升,其昂贵的训练成本使得模型版权保护(IP Protection)成为业界关注的焦点。然而,现有模型版权验证手段(如模型指纹)往往忽略一个关键威胁:攻击者一旦直接窃取模型权重,即拥有对模型的完全控制权,能够逆向指纹 / 水印,或通过修改输出内容绕过指纹验证。
当AI开始学会「摸鱼」,整个行业都该警醒了。
在大语言模型(LLM)的研究浪潮中,绝大多数工作都聚焦于优化模型的输出分布 —— 扩大模型规模、强化分布学习、优化奖励信号…… 然而,如何将这些输出分布真正转化为高质量的生成结果 —— 即解码(decoding)阶段,却没有得到足够的重视。
刚刚过去的深秋,韩国高校涌动着一股意想不到的技术暗流——“生成式人工智能(AI)作弊”事件席卷韩国大学圈,三所顶尖高校无一幸免。在延世大学、首尔大学、高丽大学的考试中,学生在课堂及线上考试中动用ChatGPT或群聊进行作弊。