
深度|谁在为OpenAI和Anthropic的AI编程竞赛提供“军火”?已赚得盆满钵满
深度|谁在为OpenAI和Anthropic的AI编程竞赛提供“军火”?已赚得盆满钵满AI 开发者之所以一致认为编程的重要性,是有原因的:大型语言模型编程能力越强,它回答与软件无关的其他类型问题的能力也越强。
AI 开发者之所以一致认为编程的重要性,是有原因的:大型语言模型编程能力越强,它回答与软件无关的其他类型问题的能力也越强。
哈佛大学研究了大型语言模型在回答晦涩难懂和有争议问题时产生「幻觉」的原因,发现模型输出的准确性高度依赖于训练数据的质量和数量。研究结果指出,大模型在处理有广泛共识的问题时表现较好,但在面对争议性或信息不足的主题时则容易产生误导性的回答。
现如今,大型语言模型(LLM)生成的内容已经充斥了整个互联网,并且这些模型还能模仿各种类似真人的语气和行文风格,让人难以分辨眼前的文本究竟来自人类还是 AI。
大型语言模型(LLMs)虽然在适应新任务方面取得了长足进步,但它们仍面临着巨大的计算资源消耗,尤其在复杂领域的表现往往不尽如人意。
大型语言模型 (LLM) 在各种自然语言处理和推理任务中表现出卓越的能力,某些应用场景甚至超越了人类的表现。然而,这类模型在最基础的算术问题的表现上却不尽如人意。
在当今科技界,关于人工智能是否被过度炒作的争论从未停息。然而,很少有像谷歌 DeepMind 的安全研究专家和机器学习科学家 Nicholas Carlini 这样的专家,用亲身经历为我们提供了一个独特的视角。通过他的文章,我们看到了大型语言模型(LLM)在实际应用中的强大能力和多样性。这些并非空洞的营销宣传,而是切实可以改变工作方式、提高生产效率、激发创意的工具。
按照传统,FDA会每年秋季都会更新一次人工智能数据库,目前,FDA数据库中共有950个设备。 截至2024年10月,还没有任何使用生成式人工智能或由大型语言模型驱动的设备获批。
本文是一篇发表在 NeurIPS 2024 上的论文,单位是香港大学、Sea AI Lab、Contextual AI 和俄亥俄州立大学。论文主要探讨了大型语言模型(LLMs)的词表大小对模型性能的影响。
RAG(Retrieval-Augmented Generation)是一种结合信息检索与文本生成的技术,旨在提高大型语言模型(LLM)在回答复杂查询时的表现。它通过检索相关的上下文信息来增强生成答案的质量和准确性。解读RAG测评:关键指标与应用分析
Transformer 的强大实力已经在诸多大型语言模型(LLM)上得到了证明,但该架构远非完美,也有很多研究者致力于改进这一架构,比如机器之心曾报道过的 Reformer 和 Infini-Transformer。