AI资讯新闻榜单内容搜索-多模态

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: 多模态
告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

告别数据「噪音」,UCSD大模型推理新方法DreamPRM充当「信号放大器」,登顶MathVista测评榜

使用过程奖励模型(PRM)强化大语言模型的推理能力已在纯文本任务中取得显著成果,但将过程奖励模型扩展至多模态大语言模型(MLLMs)时,面临两大难题:

来自主题: AI技术研报
7790 点击    2025-07-12 11:58
文档秒变演讲视频还带配音!开源Agent商业报告/学术论文接近人类水平

文档秒变演讲视频还带配音!开源Agent商业报告/学术论文接近人类水平

文档秒变演讲视频还带配音!开源Agent商业报告/学术论文接近人类水平

现在的AI Agent在文档生成PPT或视频方面,要想像人一样,把文字、图片、讲解、音视频全都串起来讲清楚,还真不太行。

来自主题: AI技术研报
7091 点击    2025-07-11 16:41
感知错误率降低30.5%:隐式感知损失让模型主动“睁大眼睛” | UIUC&阿里通义

感知错误率降低30.5%:隐式感知损失让模型主动“睁大眼睛” | UIUC&阿里通义

感知错误率降低30.5%:隐式感知损失让模型主动“睁大眼睛” | UIUC&阿里通义

让大模型在学习推理的同时学会感知。伊利诺伊大学香槟分校(UIUC)与阿里巴巴通义实验室联合推出了全新的专注于多模态推理的强化学习算法PAPO(Perception-Aware Policy Optimization)。

来自主题: AI技术研报
7431 点击    2025-07-11 16:23
真实科研水平集体不及格!全新基准SFE给主流多模态LLM来了波暴击

真实科研水平集体不及格!全新基准SFE给主流多模态LLM来了波暴击

真实科研水平集体不及格!全新基准SFE给主流多模态LLM来了波暴击

当前,驱动科学研究的人工智能(AI for Science,AI4S)在单点取得了可观的进展,实现了工具层面的革新,然而要成为「革命的工具」,需要采用「通专融合 AGI」方式。

来自主题: AI技术研报
9567 点击    2025-07-11 10:51
单向VLM变双向!人大斯坦福等提出MoCa框架:双向多模态编码器

单向VLM变双向!人大斯坦福等提出MoCa框架:双向多模态编码器

单向VLM变双向!人大斯坦福等提出MoCa框架:双向多模态编码器

MoCa框架把单向视觉语言模型转化为双向多模态嵌入模型,通过持续预训练和异构对比微调,提升模型性能和泛化能力,在多模态基准测试中表现优异,尤其小规模模型性能突出。

来自主题: AI技术研报
9228 点击    2025-07-11 10:09
昆仑万维开源最强多模态推理模型!性能逼近人类专家,还超了OpenAI、Anthropic

昆仑万维开源最强多模态推理模型!性能逼近人类专家,还超了OpenAI、Anthropic

昆仑万维开源最强多模态推理模型!性能逼近人类专家,还超了OpenAI、Anthropic

今日,昆仑万维重磅开源多模态推理模型Skywork-R1V 3.0,这是其迄今最强多模态推理模型,参数规模为38B,在多个多模态推理基准测试中取得了开源最佳(SOTA)性能。

来自主题: AI资讯
10367 点击    2025-07-09 21:42
AI infra赛道再现3000万美元大额融资,当数据处理遇上AI,如何重新定义多模态数据的未来

AI infra赛道再现3000万美元大额融资,当数据处理遇上AI,如何重新定义多模态数据的未来

AI infra赛道再现3000万美元大额融资,当数据处理遇上AI,如何重新定义多模态数据的未来

你有没有想过,为什么那些最聪明的AI工程师要把80%的时间浪费在修复数据基础设施上,而不是构建真正改变世界的AI应用?这个看似不合理的现象,正是Eventual创始人Sammy Sidhu和Jay Chia在Lyft自动驾驶部门工作时亲身经历的痛苦。

来自主题: AI资讯
7305 点击    2025-07-09 12:55
突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

突破全模态AI理解边界:HumanOmniV2引入上下文强化学习,赋能全模态模型“意图”推理新高度

在多模态大语言模型(MLLMs)应用日益多元化的今天,对模型深度理解和分析人类意图的需求愈发迫切。尽管强化学习(RL)在增强大语言模型(LLMs)的推理能力方面已展现出巨大潜力,但将其有效应用于复杂的多模态数据和格式仍面临诸多挑战。

来自主题: AI技术研报
8247 点击    2025-07-09 10:59