
详解Latte:去年底上线的全球首个开源文生视频DiT
详解Latte:去年底上线的全球首个开源文生视频DiT随着 Sora 的成功发布,视频 DiT 模型得到了大量的关注和讨论。设计稳定的超大规模神经网络一直是视觉生成领域的研究重点。DiT [1] 的成功为图像生成的规模化提供了可能性。
随着 Sora 的成功发布,视频 DiT 模型得到了大量的关注和讨论。设计稳定的超大规模神经网络一直是视觉生成领域的研究重点。DiT [1] 的成功为图像生成的规模化提供了可能性。
【新智元导读】利用文本生成图片(Text-to-Image, T2I)已经满足不了人们的需要了,近期研究在T2I模型的基础上引入了更多类型的条件来生成图像,本文对这些方法进行了总结综述。
众所周知,开发顶级的文生图(T2I)模型需要大量资源,因此资源有限的个人研究者基本都不可能承担得起,这也成为了 AIGC(人工智能内容生成)社区创新的一大阻碍。同时随着时间的推移,AIGC 社区又能获得持续更新的、更高质量的数据集和更先进的算法。
有人表示:「等待已久的 AI 图像创建功能终于迎来了图层!」
龙年刚一开年,OpenAI又打开了新局面,这次火的是文生视频。2月16日凌晨,OpenAI发布了文生视频大模型Sora。Sora能够根据文本提示创建详细的视频、扩展现有视频中的叙述以及从静态图像生成场景。
简单粗暴的理解,就是语言能力足够强大之后,它带来的泛化能力直接可以学习图像视频数据和它体现出的模式,然后还可以直接用学习来的图像生成模型最能理解的方式,给这些利用了引擎等已有的强大而成熟的视频生成技术的视觉模型模块下指令,最终生成我们看到的逼真而强大的对物理世界体现出“理解”的视频。
Pika北大斯坦福联手,开源最新文本-图像生成/编辑框架!
主题驱动的文本到图像生成,通常需要在多张包含该主题(如人物、风格)的数据集上进行训练,这类方法中的代表工作包括 DreamBooth、Textual Inversion、LoRAs 等,但这类方案因为需要更新整个网络或较长时间的定制化训练,往往无法很有效地兼容社区已有的模型,并无法在真实场景中快速且低成本应用。
将2D扩散模型的强大图像生成能力与再绘策略的纹理对齐能力结合起来,Repaint123能够在2分钟内从零开始生成具有多视角一致性和精细纹理的高质量3D内容。
谷歌新设计的一种图像生成模型已经能做到这一点了!通过引入指令微调技术,多模态大模型可以根据文本指令描述的目标和多张参考图像准确生成新图像,效果堪比 PS 大神抓着你的手助你 P 图。