
OpenAI再招华人研究员!高中入围美国“少年诺贝尔奖”,还在哈佛教书
OpenAI再招华人研究员!高中入围美国“少年诺贝尔奖”,还在哈佛教书就在刚刚,哈佛华人研究员Jeffrey Wang正式官宣加入OpenAI——
就在刚刚,哈佛华人研究员Jeffrey Wang正式官宣加入OpenAI——
o1-preview在医疗诊断中远超人类,赛博看病指日可待?
不像西部世界的 AI 那么智能,现在的 AI 经常没办法满足我的小众需求。 我开始以为是模型能力的问题,但是试用了各家的 AI 发现它们都因为使用的搜索引擎 API 无法搜出相关内容而无法解答。
又一科幻场景步入现实!GPT-4竟和多个AI模型私自串通一气,欲要形成垄断的资本寡头联合定价。在被哈佛PSU团队抓现行后,大模型拒不认账。未来某天,AI会不会真要失控?
哈佛斯坦福MIT等机构首次提出「精度感知」scaling law,揭示了精度、参数规模、数据量之间的统一关系。数据量增加,模型对量化精度要求随之提高,这预示着AI领域低精度加速的时代即将结束!
4-bit量化,能让现有反学习/机器遗忘技术失灵!
最近,宾夕法尼亚大学沃顿商学院的Ethan Mollick教授在常春藤名校哈佛大学发表了一场引人深思的讲座。
能够执行多种任务,识别19种癌症类型,预测患者生存率……哈佛医学院研究人员提出CHIEF,一种多功能AI癌症诊断模型,表现出类似于ChatGPT的灵活性,远超其他现有的癌症诊断模型。
与最先进的开源方法甚至闭源模型 GPT-4o 相比,MMedAgent 在各种医疗任务中实现了卓越的性能。此外,MMedAgent 在更新和集成新医疗工具方面表现出效率。
哈佛大学研究了大型语言模型在回答晦涩难懂和有争议问题时产生「幻觉」的原因,发现模型输出的准确性高度依赖于训练数据的质量和数量。研究结果指出,大模型在处理有广泛共识的问题时表现较好,但在面对争议性或信息不足的主题时则容易产生误导性的回答。