
等不来OpenAI的Q*,华为诺亚探索LLM推理的秘密武器MindStar先来了
等不来OpenAI的Q*,华为诺亚探索LLM推理的秘密武器MindStar先来了人工智能(AI)在过去十年里取得了长足进步,特别是在自然语言处理和计算机视觉领域。然而,如何提升 AI 的认知能力和推理能力,仍然是一个巨大的挑战。
人工智能(AI)在过去十年里取得了长足进步,特别是在自然语言处理和计算机视觉领域。然而,如何提升 AI 的认知能力和推理能力,仍然是一个巨大的挑战。
基于 Transformer 架构的大语言模型在 NLP 领域取得了令人惊艳的效果,然而,Transformer 中自注意力带来的二次复杂度使得大模型的推理成本和内存占用十分巨大,特别是在长序列的场景中。
近期,来自华为诺亚方舟实验室的研究者提出了 DenseSSM,用于增强 SSM 中各层间隐藏信息的流动。通过将浅层隐藏状态有选择地整合到深层中,DenseSSM 保留了对最终输出至关重要的精细信息。
众所周知,开发顶级的文生图(T2I)模型需要大量资源,因此资源有限的个人研究者基本都不可能承担得起,这也成为了 AIGC(人工智能内容生成)社区创新的一大阻碍。同时随着时间的推移,AIGC 社区又能获得持续更新的、更高质量的数据集和更先进的算法。
华为盘古系列,带来架构层面上新!量子位获悉,华为诺亚方舟实验室等联合推出新型大语言模型架构:盘古-π。
近日,来自华为诺亚方舟实验室、北京大学等机构的研究者提出了盘古 π 的网络架构,尝试来构建更高效的大模型架构。
有结构化推理和先验知识,智能体变得更加通用了。
从低清图像中提取认知特征,这样的超分辨率才更真实。
相比于一味规避“有毒”数据,以毒攻毒,干脆给大模型喂点错误文本,再让模型剖析、反思出错的原因,反而能够让模型真正理解“错在哪儿了”,进而避免胡说八道。