当直接从BI转到生成式AI时,是否意味着跳过了机器学习
当直接从BI转到生成式AI时,是否意味着跳过了机器学习当今世界,人们都在谈论生成式人工智能。全世界都知道所有最新的GenAI概念和术语——因此,你会比以往听到更多这样的话:“这个词不等于token”。全世界都开始实施至少一个或两个GenAI用例,当然——我引用它的意思是“改变生活”。
当今世界,人们都在谈论生成式人工智能。全世界都知道所有最新的GenAI概念和术语——因此,你会比以往听到更多这样的话:“这个词不等于token”。全世界都开始实施至少一个或两个GenAI用例,当然——我引用它的意思是“改变生活”。
AI门槛很高,但现在是未来几年最低的时候
如果你已经读过我们上一篇经典长文《DeepSearch/DeepResearch 的设计与实现》,那么不妨再深挖一些能大幅提升回答质量的细节。这次,我们将重点关注两个细节:
近年来,大型语言模型(LLM)通过大量计算资源在推理阶段取得了解决复杂问题的突破。推理速度已成为 LLM 架构的关键属性,市场对高效快速的 LLM 需求不断增长。
文本到图像(Text-to-Image, T2I)生成任务近年来取得了飞速进展,其中以扩散模型(如 Stable Diffusion、DiT 等)和自回归(AR)模型为代表的方法取得了显著成果。然而,这些主流的生成模型通常依赖于超大规模的数据集和巨大的参数量,导致计算成本高昂、落地困难,难以高效地应用于实际生产环境。
科技圈再掀波澜,一家名为Graphite的纽约人工智能初创公司,正式名称为Screenplay Studios Inc.,今日宣布成功斩获高达5200万美元的B轮融资,为这家专注于颠覆传统代码审查模式的新星注入了强劲动力。
近日,中国人工智能学会发布2024年度“吴文俊人工智能科学技术奖”公告,京东科技人工智能团队凭借“多模态交互式数字人关键技术及产业应用”项目荣获中国智能科学技术最高奖——吴文俊人工智能科学技术奖的特等奖,也是本年度唯一的特等奖。
大模型在文本生成方面取得了卓越的成就,通过合适的prompt设计,往往可以使得生成结果符合特定的需求。但是为属性繁多的任务设计出合适的prompt是很困难的。一种解决方案是通过线性组合方式或者其变种将每个属性对应的模型在生成logits上进行融合。鉴于属性之间可能存在的冲突现象,这种方案无法保证模型的主属性不受其他模型的干扰。
事关路由LLM(Routing LLM),一项截至目前最全面的研究,来了——
从自动驾驶、机器人导航,到AR/VR等前沿应用,SLAM都是离不开的核心技术之一。