英伟达成美国大模型开源标杆:Nemotron 3连训练配方都公开,10万亿token数据全放出
英伟达成美国大模型开源标杆:Nemotron 3连训练配方都公开,10万亿token数据全放出英伟达在开源模型上玩的很激进: “最高效的开放模型家族”Nemotron 3,混合Mamba-Transformer MoE架构、NVFP4低精度训练全用上。而且开放得很彻底:
英伟达在开源模型上玩的很激进: “最高效的开放模型家族”Nemotron 3,混合Mamba-Transformer MoE架构、NVFP4低精度训练全用上。而且开放得很彻底:
浙江大学ReLER团队开源ContextGen框架,攻克多实例图像生成中布局与身份协同控制难题。基于Diffusion Transformer架构,通过双重注意力机制,实现布局精准锚定与身份高保真隔离,在基准测试中超越开源SOTA模型,对标GPT-4o等闭源系统,为定制化AI图像生成带来新突破。
AI不应是巨头游戏,模型也不是越大越聪明。近日,「Transformer八子」中的Ashish Vaswani和Parmar共同推出了一个8B的开源小模型,剑指Scaling Law软肋,为轻量化、开放式AI探索了新方向。
过去三年,扩散模型席卷图像生成领域。以 DiT (Diffusion Transformer) 为代表的新一代架构不断刷新图像质量的极限,让模型愈发接近真实世界的视觉规律。
最近,网友们已经被AI「手指难题」逼疯了。给AI一支六指手,它始终无法正确数出到底有几根手指!说吧AI,你是不是在嘲笑人类?其实这背后,暗藏着Transformer架构的「阿喀琉斯之踵」……
现在的大学生该选什么专业?未来一百年的大学会是什么样子?业界 AI 如此强势,学界还能做什么?谷歌在过去二十多年里做对了什么,又有哪些遗憾?
“人工智能要发展到下一个台阶,一定要突破两座大山。第一座大山是Transformer,第二座大山是反向传播算法。”在大模型规模不断拔高、算力与数据卷到极致的当下,RockAI创始人刘凡平提出了一个与主流共识截然不同的判断。
北航刘偲教授团队提出首个大规模真实星座调度基准AEOS-Bench,更创新性地将Transformer模型的泛化能力与航天工程的专业需求深度融合,训练内嵌时间约束的调度模型AEOS-Former。这一组合为未来的“AI星座规划”奠定了新的技术基准。
我们以为语言是语法、规则、结构。但最新的Nature研究却撕开了这层幻觉。GPT的层级结构与竟与人大脑里的「时间印记」一模一样。当浅层、中层、深层在脑中依次点亮,我们第一次看见:理解语言,也许从来不是解析,而是预测。
谷歌DeepMind掌门人断言,2030年AGI必至!不过,在此之前,还差1-2个「Transformer级」核爆突破。恰在NeurIPS大会上,谷歌甩出下一代Transformer最强继任者——Titans架构。