
ICLR 2025|浙大、千问发布预训练数据管理器DataMan,53页细节满满
ICLR 2025|浙大、千问发布预训练数据管理器DataMan,53页细节满满在 Scaling Law 背景下,预训练的数据选择变得越来越重要。然而现有的方法依赖于有限的启发式和人类的直觉,缺乏全面和明确的指导方针。在此背景下,该研究提出了一个数据管理器 DataMan,其可以从 14 个质量评估维度对 15 个常见应用领域的预训练数据进行全面质量评分和领域识别。
在 Scaling Law 背景下,预训练的数据选择变得越来越重要。然而现有的方法依赖于有限的启发式和人类的直觉,缺乏全面和明确的指导方针。在此背景下,该研究提出了一个数据管理器 DataMan,其可以从 14 个质量评估维度对 15 个常见应用领域的预训练数据进行全面质量评分和领域识别。
当 Scaling Law 在触顶边界徘徊之时,强化学习为构建更强大的大模型开辟出了一条新范式。
谷歌团队发布LLM硬核技术教科书,从「系统视图」揭秘LLM Scaling的神秘面纱。Jeff Dean强调书中藏着谷歌最强AI模型Gemini训练的更多信息。
近年来, Scaling Up 指导下的 AI 基础模型取得了多项突破。从早期的 AlexNet、BERT 到如今的 GPT-4,模型规模从数百万参数扩展到数千亿参数,显著提升了 AI 的语言理解和生成等能力。然而,随着模型规模的不断扩大,AI 基础模型的发展也面临瓶颈:高质量数据的获取和处理成本越来越高,单纯依靠 Scaling Up 已难以持续推动 AI 基础模型的进步。
一度狂跌的英伟达股价,又被Grok-3盘活了?20万块GPU训出的模型超越DeepSeek和OpenAI,证明Scaling Law还在继续增长!Ai2研究者大佬直言:Grok-3,就是DeepSeek给美国AI企业压力的又一力证。
强化学习训练数据越多,模型推理能力就越强?新研究提出LIM方法,揭示提升推理能力的关键在于优化数据质量,而不是数据规模。该方法在小模型上优势尽显。从此,强化学习Scaling Law可能要被改写了!
英伟达巧妙地将DeepSeek-R1与推理时扩展相结合,构建了全新工作流程,自动优化生成GPU内核,取得了令人瞩目的成果。
蒸馏模型的性能可以量化估算了。
史上最大规模视觉语言数据集:1000亿图像-文本对!
【新智元导读】仅凭测试时Scaling,1B模型竟完胜405B!多机构联手巧妙应用计算最优TTS策略,不仅0.5B模型在数学任务上碾压GPT-4o,7B模型更是力压o1、DeepSeek R1这样的顶尖选手。