NeurIPS 2025 Spotlight | NYU提出QSVD,仅数学压缩让模型更轻、更快、更稳
NeurIPS 2025 Spotlight | NYU提出QSVD,仅数学压缩让模型更轻、更快、更稳在多模态智能浪潮中,视觉语言模型(Vision-Language Models, VLM)已成为连接视觉理解与语言生成的核心引擎。从图像描述、视觉问答到 AI 教育和交互系统,它们让机器能够「看懂世界、说人话」。
在多模态智能浪潮中,视觉语言模型(Vision-Language Models, VLM)已成为连接视觉理解与语言生成的核心引擎。从图像描述、视觉问答到 AI 教育和交互系统,它们让机器能够「看懂世界、说人话」。
近年来,Stable Diffusion、CogVideoX 等视频生成模型在自然场景中表现惊艳,但面对科学现象 —— 如流体模拟或气象过程 —— 却常常 “乱画”:如下视频所示,生成的流体很容易产生违背物理直觉的现象,比如气旋逆向旋转或整体平移等等。
一篇入围顶会NeurIPS’25 Oral的论文,狠狠反击了一把DiT(Diffusion Transformer)。这篇来自字节跳动商业化技术团队的论文,则是提出了一个名叫InfinityStar的方法,一举兼得了视频生成的质量和效率,为视频生成方法探索更多可能的路径。
研究者们提出了 FDA(Model Merging with Functional Dual Anchors)——一个全新的模型融合框架。与传统的参数空间操作不同,FDA 将专家模型的参数知识投射到输入-表征空间中的合成锚点,通过功能对偶的方式实现更高效的知识整合。
谷歌在第三天发布了《上下文工程:会话与记忆》(Context Engineering: Sessions & Memory) 白皮书。文中开篇指出,LLM模型本身是无状态的 (stateless)。如果要构建有状态的(stateful)和个性化的 AI,关键在于上下文工程。
近期,RAE(Diffusion Transformers with Representation Autoencoders)提出以「 冻结的预训练视觉表征」直接作为潜空间,以显著提升扩散模型的生成性能。
近日,来自北京大学与BeingBeyond的研究团队提出DemoHLM框架,为人形机器人移动操作(loco-manipulation)领域提供一种新思路——仅需1次仿真环境中的人类演示,即可自动生成海量训练数据,实现真实人形机器人在多任务场景下的泛化操作,有效解决了传统方法依赖硬编码、真实数据成本高、跨场景泛化差的核心痛点。
我们长期把LLM当成能独闯难关的“单兵”,在很多任务上,这确实有效。
最近,谷歌AI Studio上的一个神秘模型不仅成功识别了200多年前一位商人的「天书」账本,而且还修正了里面的格式错误和模糊表述,展现出的推理能力令历史学家震惊。
近期,阿里巴巴 ROLL 团队(淘天未来生活实验室与阿里巴巴智能引擎团队)联合上海交通大学、香港科技大学推出「3A」协同优化框架 ——Async 架构(Asynchronous Training)、Asymmetric PPO(AsyPPO)与 Attention 机制(Attention-based Reasoning Rhythm),