
打破长视频理解瓶颈:HoPE混合位置编码提升VLM长度泛化能力
打破长视频理解瓶颈:HoPE混合位置编码提升VLM长度泛化能力如今的视觉语言模型 (VLM, Vision Language Models) 已经在视觉问答、图像描述等多模态任务上取得了卓越的表现。然而,它们在长视频理解和检索等长上下文任务中仍表现不佳。
如今的视觉语言模型 (VLM, Vision Language Models) 已经在视觉问答、图像描述等多模态任务上取得了卓越的表现。然而,它们在长视频理解和检索等长上下文任务中仍表现不佳。
迈向通用人工智能(AGI)的核心目标之一就是打造能在开放世界中自主探索并持续交互的智能体。随着大语言模型(LLMs)和视觉语言模型(VLMs)的飞速发展,智能体已展现出令人瞩目的跨领域任务泛化能力。
当前大型视觉语言模型(LVLMs)存在物体幻觉问题,即会生成图像中不存在的物体描述。
在金融科技智能化转型进程中,大语言模型以及多模态大模型(LVLM)正成为核心技术驱动力。尽管 LVLM 展现出卓越的跨模态认知能力
视觉语言模型(VLM)正经历从「感知」到「认知」的关键跃迁。 当OpenAI的o3系列通过「图像思维」(Thinking with Images)让模型学会缩放、标记视觉区域时,我们看到了多模态交互的全新可能。
在文本推理领域,以GPT-o1、DeepSeek-R1为代表的 “慢思考” 模型凭借显式反思机制,在数学和科学任务上展现出远超 “快思考” 模型(如 GPT-4o)的优势。
近段时间,已经出现了不少基于扩散模型的语言模型,而现在,基于扩散模型的视觉-语言模型(VLM)也来了,即能够联合处理视觉和文本信息的模型。今天我们介绍的这个名叫 LaViDa,继承了扩散语言模型高速且可控的优点,并在实验中取得了相当不错的表现。
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。
强化学习 (RL) 显著提升了视觉-语言模型 (VLM) 的推理能力。然而,RL 在推理任务之外的应用,尤其是在目标检测 和目标定位等感知密集型任务中的应用,仍有待深入探索。
FastVLM—— 让苹果手机拥有极速视觉理解能力