
刚刚,奥特曼给出AGI三个判断:Scaling Law保持不变,没理由放缓投资
刚刚,奥特曼给出AGI三个判断:Scaling Law保持不变,没理由放缓投资刚刚,OpenAI奥特曼的最新AI观察出炉:Scaling Law将保持不变,短时间内没有理由停止对AI进行指数增长级的投资!1、AI能力与投入资源呈对数关系 2、AI使用成本每年降低约10倍 3、AI带来的社会经济价值呈超级指数增长
刚刚,OpenAI奥特曼的最新AI观察出炉:Scaling Law将保持不变,短时间内没有理由停止对AI进行指数增长级的投资!1、AI能力与投入资源呈对数关系 2、AI使用成本每年降低约10倍 3、AI带来的社会经济价值呈超级指数增长
「慢思考」(Slow-Thinking),也被称为测试时扩展(Test-Time Scaling),成为提升 LLM 推理能力的新方向。近年来,OpenAI 的 o1 [4]、DeepSeek 的 R1 [5] 以及 Qwen 的 QwQ [6] 等顶尖推理大模型的发布,进一步印证了推理过程的扩展是优化 LLM 逻辑能力的有效路径。
Ilya Sutskever 在 NeurIPS 会上直言:大模型预训练这条路可能已经走到头了。上周的 CES 2025,黄仁勋有提到,在英伟达看来,Scaling Laws 仍在继续,所有新 RTX 显卡都在遵循三个新的扩展维度:预训练、后训练和测试时间(推理),提供了更佳的实时视觉效果。
近日,资深机器学习研究科学家 Cameron R. Wolfe 更新了一篇超长的博客文章,详细介绍了 LLM scaling 的当前状况,并分享了他对 AI 研究未来的看法。
明天就是辞旧迎新的春节假期,咱来点不一样的——送上一份「年初展望」,站在2025年伊始,把AI科技领域不同领域的热点趋势,浅浅盘了一圈。从人型机器人、AI眼镜,从推理模型到AI Coding……分别从产品侧和技术侧,把今年最有料的8个大热门趋势一网打尽,干货过年。
2028年,预计高质量数据将要耗尽,数据Scaling走向尽头。2025年,测试时计算将开始成为主导AI通向通用人工智能(AGI)的新一代Scaling Law。近日,CMU机器学习系博客发表新的技术文章,从元强化学习(meta RL)角度,详细解释了如何优化LLM测试时计算。
就在本周,Kimi 的新模型打开了强化学习 Scaling 新范式,DeepSeek R1 用开源的方式「接班了 OpenAI」,谷歌则把 Gemini 2.0 Flash Thinking 的上下文长度延伸到了 1M。1 月 24 日上午,百川智能重磅发布了国内首个全场景深度思考模型,把这一轮军备竞赛推向了高潮。
视觉版o1的初步探索,阶跃星辰&北航团队推出“慢感知”。研究人员认为:1)目前多模领域o1-like的模型,主要关注文本推理,对视觉感知的关注不够。2)精细/深度感知是一个复杂任务,且是未来做视觉推理的重要基础。
瞄准推理时扩展(Inference-time scaling),DeepMind新的进化搜索策略火了! 所提出的“Mind Evolution”(思维进化),能够优化大语言模型(LLMs)在规划和推理中的响应。
OpenAI的新Scaling Law,含金量又提高了。