
大家都说通义大模型好,究竟好在哪?
大家都说通义大模型好,究竟好在哪?都说国产大模型“通义千问”能打,到底是真强还是智商税?今天就带你看看,这个国产“AI猛将”凭什么火出圈! 2023年4月,阿里巴巴推出通义千问,选择了“全开源”的策略,成为全球开发者关注的焦点。而在2024年的云栖大会上,阿里云进一步发布了Qwen2.5系列,包括多个尺寸的大语言模型、多模态模型、数学模型和代码模型,涵盖从0.5B到72B的完整规模
都说国产大模型“通义千问”能打,到底是真强还是智商税?今天就带你看看,这个国产“AI猛将”凭什么火出圈! 2023年4月,阿里巴巴推出通义千问,选择了“全开源”的策略,成为全球开发者关注的焦点。而在2024年的云栖大会上,阿里云进一步发布了Qwen2.5系列,包括多个尺寸的大语言模型、多模态模型、数学模型和代码模型,涵盖从0.5B到72B的完整规模
QVQ 在人工智能的视觉理解和复杂问题解决能力方面实现了重大突破。在 MMMU 评测中,QVQ 取得了 70.3 的优异成绩,并且在各项数学相关基准测试中相比 Qwen2-VL-72B-Instruct 都有显著提升。通过细致的逐步推理,QVQ 在视觉推理任务中展现出增强的能力,尤其在需要复杂分析思维的领域表现出色。
OpenAI谷歌天天刷流量,微软也坐不住了,推出最新小模型Phi-4。 参数量仅14B,MMLU性能就和Llama 3.3/ Qwen2.5等70B级别大模型坐一桌。
大语言模型(LLMs)在推理任务上展现出了令人瞩目的能力,但其推理思维方式的单一性一直是制约性能提升的关键瓶颈。目前的研究主要关注如何通过思维链(Chain-of-Thought)等方法来提升推理的质量,却忽视了一个重要维度——推理类型的多样性。
自从 Chatgpt 诞生以来,LLM(大语言模型)的参数量似乎就成为了各个公司的竞赛指标。GPT-1 参数量为 1.17 亿(1.17M),而它的第四代 GPT-4 参数量已经刷新到了 1.8 万亿(1800B)。
随着基础模型(如VLMs,例如Minimax、Qwen-V)和尖端图像生成技术(如Flux 1.1)的快速发展,我们正进入一个创造性可能性的新纪元。结合像T5这样的模型以增强对潜在空间中文本提示的理解,这些工具使得生产广告级别的关键视觉(KVs)成为可能,且具有显著的真实感。
尽管近期 Qwen2-VL 和 InternVL-2.0 的出现将开源多模态大模型的 SOTA 提升到了新高度,但巨大的计算开销限制了其在很多场景下的应用。
自从 OpenAI 发布展现出前所未有复杂推理能力的 o1 系列模型以来,全球掀起了一场 AI 能力 “复现” 竞赛。近日,上海交通大学 GAIR 研究团队在 o1 模型复现过程中取得新的突破,通过简单的知识蒸馏方法,团队成功使基础模型在数学推理能力上超越 o1-preview。
国产大模型,最近有点卷。
今天,我们很高兴开源“强大”、“多样”、“实用”的Qwen2.5-Coder全系列模型,致力于持续推动Open CodeLLMs的发展。