
4K分辨率视觉预训练首次实现!伯克利&英伟达多模态新SOTA,更准且3倍加速处理
4K分辨率视觉预训练首次实现!伯克利&英伟达多模态新SOTA,更准且3倍加速处理当前,所有主流的视觉基础模型(如 SigLIP、DINOv2 等)都仍然在低分辨率(如 384 * 384 分辨率)下进行预训练。对比人类视觉系统可以轻松达到 10K 等效分辨率,这种低分辨率预训练极大地限制了视觉模型对于高清细节的理解能力。
当前,所有主流的视觉基础模型(如 SigLIP、DINOv2 等)都仍然在低分辨率(如 384 * 384 分辨率)下进行预训练。对比人类视觉系统可以轻松达到 10K 等效分辨率,这种低分辨率预训练极大地限制了视觉模型对于高清细节的理解能力。
满血版o3和o4-mini深夜登场,首次将图像推理融入思维链,还会自主调用工具,60秒内破解复杂难题。尤其是,o3以十倍o1算力刷新编程、数学、视觉推理SOTA,接近「天才水平」。此外,OpenAI还开源了编程神器Codex CLI,一夜爆火。
能处理任意条件组合的新生成框架来了!
近日,阿里通义实验室推出了全新数字人视频生成大模型 OmniTalker,只需上传一段参考视频,不仅能学会视频中人物的表情和声音,还能模仿说话风格。相比传统的数字人生产流程,该方法能够有效降低制作成本,提高生成内容的真实感和互动体验,满足更广泛的应用需求。目前该项目已在魔搭社区、HuggingFace 开放体验入口,并提供了十多个模板,所有人可以直接免费使用。
千亿参数内最强推理大模型,刚刚易主了。32B——DeepSeek-R1的1/20参数量;免费商用;且全面开源——模型权重、训练数据集和完整训练代码,都开源了。这就是刚刚亮相的Skywork-OR1 (Open Reasoner 1)系列模型——
仅用4090就能实现大规模城市场景重建!
面向3D生成,来自VAST和清华大学的自动绑骨框架开源了!3D内容创作领域正经历前所未有的爆发,无论是成熟的传统工作流,还是以VAST(Tripo)为代表的AI驱动生成工具的飞速发展,都体现了市场对高质量3D资产需求的日益激增
利用字节团队魔改的FLUX模型,可以直接把多个参考主体放进一张图了。
在信息检索系统中,搜索引擎的能力只是影响结果的一个方面,真正的瓶颈往往在于:用户的原始 query 本身不够好。
前OpenAI研究员Daniel Kokotajlo团队发布了「AI 2027」预测报告,描绘了一个超人AI崛起的未来:从2025年最贵AI诞生,到2027年自我进化的Agent-5渗透政府决策,人类可能在不知不觉中交出主导权。