AI资讯新闻榜单内容搜索-Mu

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: Mu
美国上诉法院就AI作出标志性判决(附判决书PDF)

美国上诉法院就AI作出标志性判决(附判决书PDF)

美国上诉法院就AI作出标志性判决(附判决书PDF)

3月18日,美国哥伦比亚特区巡回上诉法院就科学家Stephen Thaler(史蒂芬·泰勒博士,下称泰勒)诉Shira Perlmutter(美国版权局注册官及美国版权办公室主任)以及美国版权局作出标志性判决,认定所有受版权保护的作品必须首先由人类创作。尽管AI技术的发展使得非人类创作的作品越来越多,但根据现有的法律框架,这些作品无法获得版权保护。

来自主题: AI监管政策
8725 点击    2025-03-22 11:43
ICLR 2025 Spotlight | 慕尼黑工业大学&北京大学:迈向无冲突训练的ConFIG方法

ICLR 2025 Spotlight | 慕尼黑工业大学&北京大学:迈向无冲突训练的ConFIG方法

ICLR 2025 Spotlight | 慕尼黑工业大学&北京大学:迈向无冲突训练的ConFIG方法

在深度学习的多个应用场景中,联合优化多个损失项是一个普遍的问题。典型的例子包括物理信息神经网络(Physics-Informed Neural Networks, PINNs)、多任务学习(Multi-Task Learning, MTL)和连续学习(Continual Learning, CL)。然而,不同损失项的梯度方向往往相互冲突,导致优化过程陷入局部最优甚至训练失败。

来自主题: AI技术研报
8065 点击    2025-03-17 14:55
MM-Eureka:极少数据实现多模态推理的R1-Zero时刻

MM-Eureka:极少数据实现多模态推理的R1-Zero时刻

MM-Eureka:极少数据实现多模态推理的R1-Zero时刻

尽管 DeepSeek-R1 在单模态推理中取得了显著成功,但已有的多模态尝试(如 R1-V、R1-Multimodal-Journey、LMM-R1)尚未完全复现其核心特征。

来自主题: AI技术研报
7117 点击    2025-03-14 15:32
超越DeepSeek-R1关键RL算法GRPO,CMU「元强化微调」新范式登场

超越DeepSeek-R1关键RL算法GRPO,CMU「元强化微调」新范式登场

超越DeepSeek-R1关键RL算法GRPO,CMU「元强化微调」新范式登场

大语言模型(LLM)在推理领域的最新成果表明了通过扩展测试时计算来提高推理能力的潜力,比如 OpenAI 的 o1 系列。

来自主题: AI技术研报
6590 点击    2025-03-13 14:41
1.5B硬刚GPT-4o,CMU祭出LCPO提示可控思考!每token性能较S1暴涨2倍

1.5B硬刚GPT-4o,CMU祭出LCPO提示可控思考!每token性能较S1暴涨2倍

1.5B硬刚GPT-4o,CMU祭出LCPO提示可控思考!每token性能较S1暴涨2倍

CMU团队用LCPO训练了一个15亿参数的L1模型,结果令人震惊:在数学推理任务中,它比S1相对提升100%以上,在逻辑推理和MMLU等非训练任务上也能稳定发挥。更厉害的是,要求短推理时,甚至击败了GPT-4o——用的还是相同的token预算!

来自主题: AI技术研报
4879 点击    2025-03-10 10:22
让SFT重新伟大!CMU等华人学者提出全新「批判式微调」,媲美复刻版DeepSeek

让SFT重新伟大!CMU等华人学者提出全新「批判式微调」,媲美复刻版DeepSeek

让SFT重新伟大!CMU等华人学者提出全新「批判式微调」,媲美复刻版DeepSeek

在面对复杂的推理任务时,SFT往往让大模型显得力不从心。最近,CMU等机构的华人团队提出了「批判性微调」(CFT)方法,仅在 50K 样本上训练,就在大多数基准测试中优于使用超过200万个样本的强化学习方法。

来自主题: AI技术研报
7048 点击    2025-03-09 13:32
DeepSeek的MLA,任意大模型都能轻松迁移了

DeepSeek的MLA,任意大模型都能轻松迁移了

DeepSeek的MLA,任意大模型都能轻松迁移了

DeepSeek-R1 作为 AI 产业颠覆式创新的代表轰动了业界,特别是其训练与推理成本仅为同等性能大模型的数十分之一。多头潜在注意力网络(Multi-head Latent Attention, MLA)是其经济推理架构的核心之一,通过对键值缓存进行低秩压缩,显著降低推理成本 [1]。

来自主题: AI技术研报
4924 点击    2025-03-07 10:24
谷歌最新PlanGEN框架,开发自适应Multi-Agent,错过太可惜,不用邀请码

谷歌最新PlanGEN框架,开发自适应Multi-Agent,错过太可惜,不用邀请码

谷歌最新PlanGEN框架,开发自适应Multi-Agent,错过太可惜,不用邀请码

Agent这两天随着邀请码进入公众视野,展示了不凡的推理能力。然而,当面对需要精确规划和深度推理的复杂问题时,即使是最先进的LLMs也常常力不从心。Google研究团队提出的PlanGEN框架,正是为解决这一挑战而生。

来自主题: AI技术研报
2898 点击    2025-03-06 16:55
有没有复杂任务自动化的Multi-Agent框架?用Nexus,几行YAML搞定数据清洗

有没有复杂任务自动化的Multi-Agent框架?用Nexus,几行YAML搞定数据清洗

有没有复杂任务自动化的Multi-Agent框架?用Nexus,几行YAML搞定数据清洗

随着R1等先进推理模型展现出接近人类的推理能力,多代理系统(Multi-Agent Systems,MAS)的发展也出现了前所未有的机遇。然而,随着我们尝试构建越来越复杂的多代理系统,一个核心问题日益凸显:如何在保持系统灵活性的同时,降低开发和维护的复杂度?

来自主题: AI技术研报
7032 点击    2025-03-04 16:12
微软首个多模态Phi-4问世,56亿参数秒杀GPT-4o!LoRA华人大佬带队

微软首个多模态Phi-4问世,56亿参数秒杀GPT-4o!LoRA华人大佬带队

微软首个多模态Phi-4问世,56亿参数秒杀GPT-4o!LoRA华人大佬带队

Phi-4系列模型上新了!56亿参数Phi-4-multimodal集语音、视觉、文本多模态于一体,读图推理性能碾压GPT-4o;另一款38亿参数Phi-4-mini在推理、数学、编程等任务中超越了参数更大的LLM,支持128K token上下文。

来自主题: AI技术研报
5011 点击    2025-02-28 14:11