AI资讯新闻榜单内容搜索-LLM

AITNT-国内领先的一站式人工智能新闻资讯网站
# 热门搜索 #
搜索: LLM
扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

扩展外部测试时Scaling Law,中关村学院新发现:轻量级验证器可解锁LLM推理最优选择

在大语言模型(LLM)席卷各类复杂任务的今天,“测试时扩展”(Test-Time Scaling,TTS)已成为提升模型推理能力的核心思路 —— 简单来说,就是在模型 “答题” 时分配更多的计算资源来让它表现更好。严格来说,Test-Time Scaling 分成两类:

来自主题: AI技术研报
7316 点击    2025-11-06 14:59
ICML 2026史上最严新规:LLM不得列为作者,滥用AI直接退稿

ICML 2026史上最严新规:LLM不得列为作者,滥用AI直接退稿

ICML 2026史上最严新规:LLM不得列为作者,滥用AI直接退稿

ICML 2026论文可以投了,截止日期2026年1月28日。今年针对AI使用,组委会强调了三点:LLM不可以「署名」;严禁提示注入,否则拒稿;以及扩大AI审稿。

来自主题: AI资讯
7688 点击    2025-11-06 14:50
HF日趋榜一!真端到端模型AutoDeco终结手动调参解码

HF日趋榜一!真端到端模型AutoDeco终结手动调参解码

HF日趋榜一!真端到端模型AutoDeco终结手动调参解码

大语言模型(LLM)的「炼丹师」们,或许都曾面临一个共同的困扰:为不同任务、不同模型手动调整解码超参数(如 temperature 和 top-p)。这个过程不仅耗时耗力,而且一旦模型或任务发生变化,历史经验便瞬间失效,一切又得从头再来。

来自主题: AI技术研报
10560 点击    2025-11-04 16:14
字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

字节Seed团队发布循环语言模型Ouro,在预训练阶段直接「思考」,Bengio组参与

现代 LLM 通常依赖显式的文本生成过程(例如「思维链」)来进行「思考」训练。这种策略将推理任务推迟到训练后的阶段,未能充分挖掘预训练数据中的潜力。

来自主题: AI技术研报
8883 点击    2025-11-04 16:12
英伟达发射了首个太空AI服务器,H100已上天

英伟达发射了首个太空AI服务器,H100已上天

英伟达发射了首个太空AI服务器,H100已上天

11 月 2 日,英伟达首次把 H100 GPU 送入了太空。作为目前 AI 领域的主力训练芯片,H100 配备 80GB 内存,其性能是此前任何一台进入太空的计算机的上百倍。在轨道上,它将测试一系列人工智能处理应用,包括分析地球观测图像和运行谷歌的大语言模型(LLM)。

来自主题: AI资讯
8170 点击    2025-11-04 12:09
让LLM不再话痨,快手HiPO框架来了

让LLM不再话痨,快手HiPO框架来了

让LLM不再话痨,快手HiPO框架来了

当用户向大语言模型提出一个简单问题,比如「单词 HiPPO 里有几个字母 P?」,它却正襟危坐,开始生成一段冗长的推理链:

来自主题: AI技术研报
8493 点击    2025-11-04 10:44
大模型如何准确读懂图表?微软亚研院教它“看、动手、推理”

大模型如何准确读懂图表?微软亚研院教它“看、动手、推理”

大模型如何准确读懂图表?微软亚研院教它“看、动手、推理”

多模态大模型(MLLM)在自然图像上已取得显著进展,但当问题落在图表、几何草图、科研绘图等结构化图像上时,细小的感知误差会迅速放大为推理偏差。

来自主题: AI技术研报
7107 点击    2025-11-03 14:20
港科提出新算法革新大模型推理范式:随机策略估值竟成LLM数学推理「神操作」

港科提出新算法革新大模型推理范式:随机策略估值竟成LLM数学推理「神操作」

港科提出新算法革新大模型推理范式:随机策略估值竟成LLM数学推理「神操作」

论文第一作者何浩然是香港科技大学博士生,研究方向包括强化学习和基础模型等,研究目标是通过经验和奖励激发超级智能。共同第一作者叶语霄是香港科技大学一年级博士。通讯作者为香港科技大学电子及计算机工程系、计

来自主题: AI技术研报
8323 点击    2025-11-01 09:24
内存直降50%,token需求少56%!用视觉方式处理长文本

内存直降50%,token需求少56%!用视觉方式处理长文本

内存直降50%,token需求少56%!用视觉方式处理长文本

在NeurIPS 2025论文中,来自「南京理工大学、中南大学、南京林业大学」的研究团队提出了一个极具突破性的框架——VIST(Vision-centric Token Compression in LLM),为大语言模型的长文本高效推理提供了全新的「视觉解决方案」。值得注意的是,这一思路与近期引起广泛关注的DeepSeek-OCR的核心理念不谋而合。

来自主题: AI技术研报
8605 点击    2025-11-01 09:23