何恺明重磅新作:Just image Transformers让去噪模型回归基本功
何恺明重磅新作:Just image Transformers让去噪模型回归基本功大家都知道,图像生成和去噪扩散模型是密不可分的。高质量的图像生成都通过扩散模型实现。
大家都知道,图像生成和去噪扩散模型是密不可分的。高质量的图像生成都通过扩散模型实现。
「Voice Image」创始人 Nick Lahoika 出生在白俄罗斯,后来移民到爱沙尼亚才开始学习英语,跨语言的生活环境让他在很长一段时间内都对表达缺乏自信,直到遇到了一位专业声音教练。他才意识到表达是可以训练的,这也成为其创业的起点。
2025年11月4日,一家总部位于英国伦敦的人工智能公司Stability AI,赢得了一项具有里程碑意义的高等法院案件,该案审查了人工智能模型在未经许可的情况下使用大量受版权保护数据的合法性。而本案的原告,Getty Images 在针对人工智能公司 Stability AI 图像生成产品的英国诉讼中基本败诉。
当下的文本生成图像扩散模型取得了长足进展,为图像生成引入布局控制(Layout-to-Image, L2I)成为可能。
今天推荐一个 Dense Image Captioning 的最新技术 —— CapRL (Captioning Reinforcement Learning)。CapRL 首次成功将 DeepSeek-R1 的强化学习方法应用到 image captioning 这种开放视觉任务,创新的以实用性重新定义 image captioning 的 reward。
在开放研究领域里,苹果似乎一整个脱胎换骨,在纯粹的研究中经常会有一些出彩的工作。这次苹果发布的研究成果的确出人意料:他们用谷歌的 Nano-banana 模型做个了视觉编辑领域的 ImageNet。
在 AIGC 的下一个阶段,图像编辑(Image Editing)正逐渐取代一次性生成,成为检验多模态模型理解、生成与推理能力的关键场景。我们该如何科学、公正地评测这些图像编辑模型?
随着多模态大模型的不断演进,指令引导的图像编辑(Instruction-guided Image Editing)技术取得了显著进展。然而,现有模型在遵循复杂、精细的文本指令方面仍面临巨大挑战,往往需要用户进行多次尝试和手动筛选,难以实现稳定、高质量的「一步到位」式编辑。
多模态大模型在根据静态截图生成网页代码(Image-to-Code)方面已展现出不俗能力,这让许多人对AI自动化前端开发充满期待。
Reve AI 是一家 2023 年 12 月才建立的加州 AI 初创公司,他们在 2025 年 3 月推出了第一个生图模型叫 Reve Image 1.0,内部代号是「Halfmoon」。6 个月过后,再次升级该模型为「图像编辑模型」。