
人大系初创与OpenAI三次“撞车”:类Sora架构一年前已发论文
人大系初创与OpenAI三次“撞车”:类Sora架构一年前已发论文Sora出世前,他们拿着一篇如今被ICLR 2024接收的论文,十分费劲地为投资人、求知者讲了大半年,却处处碰壁。
Sora出世前,他们拿着一篇如今被ICLR 2024接收的论文,十分费劲地为投资人、求知者讲了大半年,却处处碰壁。
模型量化是模型压缩与加速中的一项关键技术,其将模型权重与激活值量化至低 bit,以允许模型占用更少的内存开销并加快推理速度。对于具有海量参数的大语言模型而言,模型量化显得更加重要。
在 2024 世界经济论坛的一次会谈中,图灵奖得主 Yann LeCun 提出用来处理视频的模型应该学会在抽象的表征空间中进行预测,而不是具体的像素空间 [1]。借助文本信息的多模态视频表征学习可抽取利于视频理解或内容生成的特征,
几天前,ICLR 2024 的最终接收结果出来了。
2 月 16 日,OpenAI Sora 的发布无疑标志着视频生成领域的一次重大突破。Sora 基于 Diffusion Transformer 架构,和市面上大部分主流方法(由 2D Stable Diffusion 扩展)并不相同。
单图 3D 说话人视频合成 (One-shot 3D Talking Face Generation) 可以被视作解决这一难题的下一代虚拟人技术。它旨在从单张图片中重建出目标人的三维化身 (3D Avatar)
今天介绍一篇密歇根州立大学 (Michigan State University) 和劳伦斯・利弗莫尔国家实验室(Lawrence Livermore National Laboratory)的一篇关于零阶优化深度学习框架的文章 ,本文被 ICLR 2024 接收,代码已开源。
一项名为MetaGPT的研究,通过对智能体角色进行明确分工,并要求多个智能体在协作中采用统一规范的“交流格式”等方法,让智能体性能大增。
作为图领域首个通用框架,OFA实现了训练单一GNN模型即可解决图领域内任意数据集、任意任务类型、任意场景的分类任务。
动态视觉分词统一图文表示,快手与北大合作提出基座模型 LaVIT 刷榜多模态理解与生成任务。