
斯坦福2025 AI指数出炉!中美AI终极对决差距仅剩0.3%,DeepSeek领衔
斯坦福2025 AI指数出炉!中美AI终极对决差距仅剩0.3%,DeepSeek领衔2025年斯坦福HAI报告重磅发布,456页深度剖析全球AI领域的最新趋势:中美顶级模型性能差距缩至0.3%,以DeepSeek为代表的模型强势崛起,逼近闭源巨头;推理成本暴降,小模型性能飙升,AI正变得更高效、更普惠。
2025年斯坦福HAI报告重磅发布,456页深度剖析全球AI领域的最新趋势:中美顶级模型性能差距缩至0.3%,以DeepSeek为代表的模型强势崛起,逼近闭源巨头;推理成本暴降,小模型性能飙升,AI正变得更高效、更普惠。
推理增强型大语言模型LRM(如OpenAI的o1、DeepSeek R1和Google的Flash Thinking)通过在生成最终答案前显式生成中间推理步骤,在复杂问题解决方面展现了卓越性能。然而,对这类模型的控制仍主要依赖于传统的输入级操作,如提示工程(Prompt Engineering)等方法,而你可能已经发现这些方法存在局限性。
「未来,99% 的 attention 将是大模型 attention,而不是人类 attention。」这是 AI 大牛 Andrej Karpathy 前段时间的一个预言。这里的「attention」可以理解为对内容的需求、处理和分析。也就是说,他预测未来绝大多数资料的处理工作将由大模型来完成,而不是人类。
对于「AI 危害」,每家公司都有不同的解决方案,但没有完美方案。
原生多模态Llama 4终于问世,开源王座一夜易主!首批共有两款模型Scout和Maverick,前者业界首款支持1000万上下文单H100可跑,后者更是一举击败了DeepSeek V3。目前,2万亿参数巨兽还在训练中。
语言是离散的,所以适合用自回归模型来生成;而图像是连续的,所以适合用扩散模型来生成。在生成模型发展早期,这种刻板印象广泛存在于很多研究者的脑海中。
AI不过周末,硅谷也是如此。大周日的,Llama家族上新,一群LIama 4就这么突然发布了。这是Meta首个基于MoE架构模型系列,目前共有三个款:Llama 4 Scout、Llama 4 Maverick、Llama 4 Behemoth。
最近,像 OpenAI o1/o3、DeepSeek-R1 这样的大型推理模型(Large Reasoning Models,LRMs)通过加长「思考链」(Chain-of-Thought,CoT)在推理任务上表现惊艳。
DeepSeek新论文来了!在清华研究者共同发布的研究中,他们发现了奖励模型推理时Scaling的全新方法。DeepSeek R2,果然近了。
2025年以来,DeepSeek改变着一切,一切也都期待着被DeepSeek改变。