
刚刚,谷歌ViT核心骨干集体投奔OpenAI:他们为Sora打下基础
刚刚,谷歌ViT核心骨干集体投奔OpenAI:他们为Sora打下基础爆炸消息—— ViT三大核心作者集体离职谷歌DeepMind。下一站:OpenAI! 他们分别是翟晓华(Xiaohua Zhai)、卢卡斯·拜尔(Lucas Beyer)、亚历山大·科列斯尼科夫(Alexander Kolesnikov)。
爆炸消息—— ViT三大核心作者集体离职谷歌DeepMind。下一站:OpenAI! 他们分别是翟晓华(Xiaohua Zhai)、卢卡斯·拜尔(Lucas Beyer)、亚历山大·科列斯尼科夫(Alexander Kolesnikov)。
自我博弈,很神奇吧?
这是一个可以用AI复制“一切”的时代:从你的声音、容貌和表达风格,到你的某些想法或者决策。现在,AI甚至可以复制你的“个性”,并且还相当准确。
众所周知,视频的抠图相当麻烦,要是有大面积频繁的抠图需求,还得布置绿幕进行后期PS。
OpenAI科学家Jason Wei预测,未来一年内,AI重点将从推广大众需求转为促进科学发现,无独有偶,DeepMind刚刚发布的36页报告也揭示出:全球实验室AI使用正在指数级增长,AI for Science真正的黄金时代即将来临。
在人工智能领域,大语言模型(LLM)的向量嵌入能力一直被视为处理文本数据的利器。然而,斯坦福大学和Google DeepMind的研究团队带来了一个颠覆性发现:LLM的向量嵌入能力可以有效应用于回归任务。
在当今人工智能迅猛发展的时代,大语言模型(LLMs)已成为众多AI应用的核心引擎。然而,来自ETH Zurich和Google DeepMind的一项最新研究揭示了一个令人深思的现象:这些看似强大的模型存在着严重的“盲从效应”。
近日,DeepMind 团队将水印技术和投机采样(speculative sampling)结合,在为大语言模型加入水印的同时,提升其推理效率,降低推理成本,因此适合用于大规模生产环境。
今天凌晨,新晋诺贝尔化学奖得主、DeepMind 创始人哈萨比斯参与撰写的新论文登上了 Nature,主题是如何更准确地识别并纠正量子计算机内部的错误。
通过过程奖励模型(PRM)在每一步提供反馈,并使用过程优势验证器(PAV)来预测进展,从而优化基础策略,该方法在测试时搜索和在线强化学习中显示出比传统方法更高的准确性和计算效率,显著提升了解决复杂问题的能力。