多模态慢思考:分解原子步骤以解决复杂数学推理
多模态慢思考:分解原子步骤以解决复杂数学推理AtomThink 是一个包括 CoT 注释引擎、原子步骤指令微调、政策搜索推理的全流程框架,旨在通过将 “慢思考 “能力融入多模态大语言模型来解决高阶数学推理问题。量化结果显示其在两个基准数学测试中取得了大幅的性能增长,并能够轻易迁移至不同的多模态大模型当中。
AtomThink 是一个包括 CoT 注释引擎、原子步骤指令微调、政策搜索推理的全流程框架,旨在通过将 “慢思考 “能力融入多模态大语言模型来解决高阶数学推理问题。量化结果显示其在两个基准数学测试中取得了大幅的性能增长,并能够轻易迁移至不同的多模态大模型当中。
MEGA-Bench是一个包含500多个真实世界任务的多模态评测套件,为全面评估AI模型提供了高效工具。研究人员发现,尽管顶级AI模型在多个任务中表现出色,但在复杂推理和跨模态理解方面仍有提升空间。
研究人员通过案例研究,利用大型语言模型(LLMs)如GPT-4、Claude 3和Llama 3.1,探索了思维链(CoT)提示在解码移位密码任务中的表现;CoT提示虽然提升了模型的推理能力,但这种能力并非纯粹的符号推理,而是结合了记忆和概率推理的复杂过程。
OpenAI o1彻底带火慢思考和思维链(CoT)方法,但CoT在某些任务上反而会降低模型表现。
近期,一家面向消费者的 AI 效率工具 Cove 获得世界顶级投资者 600 万美金种子轮投资,红杉资本及Elad Gil、Lenny Rachitsky、Scott Belsky等知名天使投资人参与了该项目投资。
CoT铸就了o1推理王者。 它开创了一种推理scaling新范式——随着算力增加、更长响应时间,o1性能也随之增长。
姚期智院士领衔,推出大模型新推理框架,CoT“王冠”戴不住了。
LLM说起谎来,如今是愈发炉火纯青了。 最近有用户发现,OpenAI o1在思考过程中明确地表示,自己意识到由于政策原因,不能透露内部的思维链。
多个LLM联合,可以迈向更强大系统!最新研究发现,GPT-4能够提升同伴的性能,能够让数学能力暴涨11.6%。
CoT只对数学、符号推理才起作用,其他的任务几乎没什么卵用!这是来自UT-Austin、霍普金斯、普林斯顿三大机构研究人员联手,分析了100+篇论文14类任务得出的结论。看来,CoT并非是所有大模型标配。