
RAG 高效应用指南 03:Query 理解
RAG 高效应用指南 03:Query 理解在这篇文章中,笔者将讨论以下几个问题: • 为什么要进行 query 理解 • query 理解有哪些技术(从 RAG 角度) • 各种 query 理解技术的实现(基于 LangChain)
在这篇文章中,笔者将讨论以下几个问题: • 为什么要进行 query 理解 • query 理解有哪些技术(从 RAG 角度) • 各种 query 理解技术的实现(基于 LangChain)
多模态大模型(Multimodal Large Language Models,MLLMs)在不同的任务中表现出了令人印象深刻的能力,尽管如此,这些模型在检测任务中的潜力仍被低估。
2022年,Google研究团队发表了名为《思路链提示引发大型语言模型的推理》的开创性论文,引入了思维链(Chain of Thought, CoT)prompting技术。
最近,Hacker News热榜上出现了一篇「声讨」LangChain的技术文章,得到了评论区网友的一致呼应。去年还火遍LLM圈的LangChain,为什么口碑逆转了?
想要达成通用人工智能 AGI 的终极目标,首先要达成的是模型要能完成人类所能轻松做到的任务。为了做到这一点,大模型开发的关键指导之一便是如何让机器像人类一样思考和推理。诸如注意力机制和思维链(Chain-of-Thought)等技术正是由此产生的灵感。
AI正在从Copilot向Agent过渡
或许从诞生那天起,LangChain 就注定是一个口碑两极分化的产品。
检索增强生成 (RAG) 是将检索模型与生成模型结合起来,以提高生成内容的质量和相关性的一种有效的方法。RAG 的核心思想是利用大量文档或知识库来获取相关信息。各种工具支持 RAG,包括 Langchain 和 LlamaIndex。
AI工具独立开发者「Alchain花生」最近做了一个小测试。在GPT Store上,他把自己开发的一款用户数5000+的GPT(模拟Claude 3 Opus)调成了付费模式,想看看海外用户是否真有更高的付费意愿
上一期我们分享了吴恩达教授,在红杉 AI 峰会的分享内容:Agent > GPT5?吴恩达最新演讲:四种 Agent 设计范式(通俗易懂版),分享后,吴恩达教授介绍了 Harrison 大佬,即 Langchain 的作者。