
幻觉不一定有害,新框架用AI的「幻觉」优化图像分割技术
幻觉不一定有害,新框架用AI的「幻觉」优化图像分割技术在人工智能领域,大型预训练模型(如 GPT 和 LLaVA)的 “幻觉” 现象常被视为一个难以克服的挑战,尤其是在执行精确任务如图像分割时。
在人工智能领域,大型预训练模型(如 GPT 和 LLaVA)的 “幻觉” 现象常被视为一个难以克服的挑战,尤其是在执行精确任务如图像分割时。
专注金融领域的AI Agent平台Interface.ai宣布完成3000万美元首次融资,由Avataar Venture Partners领投。
Agent-to-Sim (ATS) 是一个创新的三维模拟系统,能够从日常视频集合中学习三维代理的交互行为模型,由 Meta Codec Avatar 实验室主导研发。
GAGAvatar的出现正是为了解决这一瓶颈,通过一次前向传播就能生成3D高斯参数,实现高效的渲染与动画驱动。
视频多模态大模型(LMMs)的发展受限于从网络获取大量高质量视频数据。为解决这一问题,我们提出了一种替代方法,创建一个专为视频指令跟随任务设计的高质量合成数据集,名为 LLaVA-Video-178K。
随着对现有互联网数据的预训练逐渐成熟,研究的探索空间正由预训练转向后期训练(Post-training),OpenAI o1 的发布正彰显了这一点。
自从AI火起来之后,大模型一个接一个的出现,所有的语言、工具、产品似乎都能蹭一蹭大模型的热度。
扩展多模态大语言模型(MLLMs)的长上下文能力对于视频理解、高分辨率图像理解以及多模态智能体至关重要。这涉及一系列系统性的优化,包括模型架构、数据构建和训练策略,尤其要解决诸如随着图像增多性能下降以及高计算成本等挑战。
作为开发者,我们一直在寻找提升工作效率的方法。VS Code 无疑是目前最受欢迎的代码编辑器之一,它几乎成为了我们行业的标准。不过,由于它基于 Electron 和 JavaScript,处理大型代码库时可能会遇到一些性能问题。
随着大模型研究的深入,如何将其推广到更多的模态上已经成为了学术界和产业界的热点。最近发布的闭源大模型如 GPT-4o、Claude 3.5 等都已经具备了超强的图像理解能力,LLaVA-NeXT、MiniCPM、InternVL 等开源领域模型也展现出了越来越接近闭源的性能。