贝索斯神秘AI公司爆出,收购前OpenAI大佬创企,已融资440亿
贝索斯神秘AI公司爆出,收购前OpenAI大佬创企,已融资440亿General Agent将如何融入贝索斯公司尚未可知。 General Agents由前OpenAI研究员威廉·格斯(William Guss)于2024年创办,汇聚了来自麻省理工大学、谷歌大脑等高校和机构的研究人员,专注计算机Agent赛道,目前已发布一款Agent产品Ace,该产品能接管用户的电脑并以超人类的速度执行指令操作。
General Agent将如何融入贝索斯公司尚未可知。 General Agents由前OpenAI研究员威廉·格斯(William Guss)于2024年创办,汇聚了来自麻省理工大学、谷歌大脑等高校和机构的研究人员,专注计算机Agent赛道,目前已发布一款Agent产品Ace,该产品能接管用户的电脑并以超人类的速度执行指令操作。
任务规划+文件系统访问+子agent委托
2025年末,谷歌通过Kaggle平台,以前所未有的力度,连续推出了两个为期五天的线上强化课程。这不仅仅是两次普通的线上分享,更像是一场由谷歌顶级机器学习(ML)研究员和工程师亲自引领的、深入探索生成式AI及其前沿应用——AI Agents(人工智能代理)的集训。
静态编排 VS 动态编排,谁是多agent系统最优解?通常来说,面对简单问题,采用react模式的单一agent就能搞定。可遇到复杂问题,单一agent就会立刻出现包括但不限于以下问题:串行执行效率低:无法同时完成并行的子步骤(如 “同时爬取 A、B 两个网站的数据”)。
近日,有开发者发现,OpenAI 官方在 “openai-agents-js” GitHub 仓库中被提及一个新模型:GPT-5.1 mini 。“显然 GPT-5.1 mini 是真实的……”以下是即将推出的 GPT 模型可能采用的命名规则。
中科院的这篇工作解决了“深度搜索智能体”(deep search agents),两个实打实的工程痛点,一个是问题本身不够难导致模型不必真正思考,另一个是上下文被工具长文本迅速挤爆导致过程提前夭折,研究者直面挑战,从数据和系统两端同时重塑训练与推理流程,让复杂推理既有用又能跑得起来。
很激动。很激动。今天我想分享一个对 Agent 发展来说可能具有里程碑意义的开源项目:OpenAgents。它的目标简单又大胆:让所有 Agent 能像人类一样联网协作。我第一次看到这个项目时,确实有种这事儿该有人干,但真没人干的感觉。
谷歌云刚发布了一篇《Google Cloud Startup technical guide: Al agents》(Google Cloud 创业公司技术指南:AI 代理)这是一份非常详尽和全面的手册,这篇文档要解决的问题:原型到生产之间最大鸿沟,Agent的非确定性、复杂推理轨迹如何验证、如何部署与运维等。初创公司业务负责人或开发者看完后能获得一个系统性的、
自从 Claude code 上线 sub-agents 后,我一直对其抱很大的期待,每次做 case 都会搭建一支“AI coding 梦之队”。想象中,它们会在主 agent的协调下火力全开, 完成我超级复杂的需求。
Computer use是真正Agents的关键驱动力。它们的有效性取决于两个因素:能够接入多少工具,以及能否在这些工具之间进行推理。Computer use显著拓展了这两方面的能力——既赋予Agents使用任意软件的广度,也提升了它们将一系列动作串联成完整工作流的智能。