实测 MGX|让一群Agent联手coding,比“模型即Agent” 更接近AGI?
实测 MGX|让一群Agent联手coding,比“模型即Agent” 更接近AGI?MGX,全称 MetaGPT X,是 DeepWisdom 推出的多智能体平台,定位是“24/7 的 AI 开发团队”。它的特别之处在于,你只需要输入需求,系统就会自动生成一支虚拟团队。
MGX,全称 MetaGPT X,是 DeepWisdom 推出的多智能体平台,定位是“24/7 的 AI 开发团队”。它的特别之处在于,你只需要输入需求,系统就会自动生成一支虚拟团队。
如今,一家初创公司正在为旨在替代人类程序员工作的人工智能代理开发此类工具。其CEO 兼联合创始人Preston Zhou透露,近两年最活跃的 AI 初创企业投资方之一 Andreessen Horowitz ,刚刚领投了这家编程工具公司 Relace2300 万美元的融资。
很激动。很激动。今天我想分享一个对 Agent 发展来说可能具有里程碑意义的开源项目:OpenAgents。它的目标简单又大胆:让所有 Agent 能像人类一样联网协作。我第一次看到这个项目时,确实有种这事儿该有人干,但真没人干的感觉。
CBINSIGHTS 最近做了一份《AI Agent Bible》的报告,系统梳理了 AI Agent 的发展前景与未来趋势,提出了面向 2026 年的六大关键预测,并绘制出完整的生态版图,涵盖最值得关注的创业公司、基础设施提供商及快速崛起的营收增长型企业。同时,报告深入解析了市场格局与技术栈的演进,包括 AI Agent 的市场图谱、技术堆栈与收入竞争态势,并通过企业级应用的视角,
近日,谷歌资深工程主管、杰出工程师 Antonio Gulli 在网上公开发布了自己的新书《Agentic Design Patterns(智能体设计模式)》。地址:https://docs.google.com/document/d/1rsaK53T3Lg5KoGwvf8ukOUvbELRtH-V0LnOIFDxBryE/preview?tab=t.0#
Hi,返工早上好。 我是洛小山,和你聊聊 AI 行业思考。 AI Agent 应用的竞争逻辑,正在发生根本性变化。 当许多团队还在死磕提示词优化(PE 工程)时,一些优秀团队开始重心转向了上下文工程
具体而言,Verlog 是一个多轮强化学习框架,专为具有高度可变回合(episode)长度的长时程(long-horizon) LLM-Agent 任务而设计。它在继承 VeRL 和 BALROG 的基础上,并遵循 pytorch-a2c-ppo-acktr-gail 的成熟设计原则,引入了一系列专门优化手段,从而在任务跨度从短暂交互到数百回合时,依然能够实现稳定而高效的训练。
写代码的规则,正在被悄悄改写!不再是「人+AI一起盯屏幕」,而是一次性放出十几个任务,让代理们各自跑。真正的门槛,也不再是你能写多少行代码,而是你能不能写清楚需求、明确地拆分任务、快速浏览结果。
斯坦福大学研究人员提出了Paper2Agent,将静态论文转化为可交互的AI智能体,让学术成果可以直接被「调用」,为科研知识传播开辟了新模式,并为构建AI共研生态奠定基础。
国庆长假,AI 大模型献礼的方式是一波接一波的更新。OpenAI 突然发布 Sora2,DeepSeek 更新了 V3.2,智谱更新了 GLM-4.6,Kimi 则是更新了 App,然后默默在自己的版本记录里面,写下了这句话。