
小身板大能量:树莓派玩转 Phi-2、Mistral 和 LLaVA 等AI大模型~
小身板大能量:树莓派玩转 Phi-2、Mistral 和 LLaVA 等AI大模型~你是否想过在自己的设备上运行自己的大型语言模型(LLMs)或视觉语言模型(VLMs)?你可能有过这样的想法,但是一想到要从头开始设置、管理环境、下载正确的模型权重,以及你的设备是否能处理这些模型的不确定性,你可能就犹豫了。
你是否想过在自己的设备上运行自己的大型语言模型(LLMs)或视觉语言模型(VLMs)?你可能有过这样的想法,但是一想到要从头开始设置、管理环境、下载正确的模型权重,以及你的设备是否能处理这些模型的不确定性,你可能就犹豫了。
Artificial Analysis回顾今年人工智能的重大事件,梳理出了一份关于人工智能领域的年终总结。
随着 o1、o1 Pro 和 o3 的成功发布,我们明显看到,推理所需的时间和计算资源逐步上升。可以说,o1 的最大贡献在于它揭示了提升模型效果的另一种途径:在推理过程中,通过优化计算资源的配置,可能比单纯扩展模型参数更为高效。
本文介绍了一套针对于低比特量化的 scaling laws。
在机器人空间泛化领域,原来也有一套Scaling Law! 来自清华和新加坡国立大学的团队,发现了空间智能的泛化性规律。 在此基础上,他们提出了一套新颖的算法框架——ManiBox,让机器人能够在真实世界中应对多样化的物体位置和复杂的场景布置。
理想不是汽车企业,是人工智能企业。2024理想 AI Talk 活动直播间中,理想汽车CEO李想重申了公司的愿景,“AI对于理想意味着未来的全部”。
本月,OpenAI科学家就当前LLM的scaling方法论能否实现AGI话题展开深入辩论,认为将来AI至少与人类平分秋色;LLM scaling目前的问题可以通过后训练、强化学习、合成数据、智能体协作等方法得到解决;按现在的趋势估计,明年LLM就能赢得IMO金牌。
我们将讨论的不仅仅是哪个超级大国会胜出,而是哪个国家的AI系统会成为全球基础设施的基石,能够被广泛采用和输出。
视频生成模型卷得热火朝天,配套的视频评价标准自然也不能落后。 现在,北京大学MMCAL团队开发了首个用于视频编辑质量评估的新指标——VE-Bench,相关代码与预训练权重均已开源。
这就是 Google DeepMind 的「DeepMind 部分」——重视它,是保护它的第一步。