
30分钟内输出结果,新加坡国立大学/MIT等基于SVM构建微生物污染检测模型
30分钟内输出结果,新加坡国立大学/MIT等基于SVM构建微生物污染检测模型新加坡-麻省理工学院研究联盟、新加坡 A*SRL 实验室、新加坡国立大学、美国麻省理工学院的联合研究团队,提出了一种结合紫外吸收光谱与机器学习的检测方法,能在 30 分钟内完成细胞培养上清液的微生物污染检测。
新加坡-麻省理工学院研究联盟、新加坡 A*SRL 实验室、新加坡国立大学、美国麻省理工学院的联合研究团队,提出了一种结合紫外吸收光谱与机器学习的检测方法,能在 30 分钟内完成细胞培养上清液的微生物污染检测。
o3病毒学能力击败了94%博士级专家,准确率高达43.8%。多家研究机构联手,通过VCT测试揭示,顶尖LLM不仅能解决复杂实验难题,直接拉低了生物武器制造门槛。
蛋白质是分子尺度上生命体的功能单元,负责从催化生化反应到识别外来病原体等各种活动。
当前,人们对人工智能驱动的药物发现公司(以下简称 AIDD)这一新兴公司确发有效的界定。2025年开年,DeepSeek的爆火为AI医疗和AI制药领域带来了多维度变革。近日,BioPharma Trend发表了一份AI制药研究报告,报告力图从各个维度回答AI对生物医药的关键价值。
中国科学院深圳先进技术研究院娄春波团队与北京大学定量生物学中心钱珑团队成功推出一款生物制造大语言模型SYMPLEX。SYMPLEX是全球首个面向合成生物学元件挖掘与生物制造应用的大语言模型。
当前,医疗保健和生命科学领域,人工智能的采用非常强劲。
史上最大的基因组AI模型Evo 2使用超过12.8万个基因组数据训练,包含9.3万亿个核苷酸,能预测突变效应、设计 DNA 序列,并通过可视化工具展示学习到的生物特征,为生成生物学和疾病研究提供新思路。
过去20年,STEM博士创业率狂跌38%。这背后,是知识负担带来的结果。当代科学家需要掌握的知识量呈爆炸式增长,做出科研成果的年龄被拉长到40多岁。AI会是下一个出路吗?
当前,传统生物制造方法在知识整合、数据处理和实验设计方面面临诸多挑战,限制了其在工业化应用中的效率和可扩展性。
从随机残基分布开始,逐步生成新的蛋白质结构